Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 34P
To determine
The energy of x-ray photon.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In the Compton scattering, the photon of energy 9,2 MeV is scattered from a free electron of mass 9.1×10−319.1×10−31 kg, What is the kinetic energy acquired by the electron (in MeV), if the scattering angle is 15∘15∘?
Show that the maximum kinetic energy E, called the Compton edge, that a recoiling electron can carry away
from a Compton scattering event is given by
hf
E
(1+ mc /2hf)
where f is the frequency of the incident photon and m is the electron mass.
In the Compton scattering, the photon of energy 8.7 MeV is scattered from a
free electron of mass 9.1 × 10 31
the electron (in MeV), if the scattering angle is 164°?
kg, What is the kinetic energy acquired by
Answer:
Chapter 3 Solutions
Modern Physics
Ch. 3.2 - Calculate the quantum number, n, for this pendulum...Ch. 3.2 - An object of mass m on a spring of stiffness k...Ch. 3 - Prob. 1QCh. 3 - Prob. 2QCh. 3 - Prob. 3QCh. 3 - Prob. 4QCh. 3 - Prob. 5QCh. 3 - Prob. 6QCh. 3 - Prob. 7QCh. 3 - Prob. 8Q
Ch. 3 - Prob. 9QCh. 3 - Prob. 10QCh. 3 - Prob. 11QCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - As a single crystal is rotated in an x-ray...Ch. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the Compton scattering, the photon of energy 8,4 MeV is scattered from a free electron of mass 9.1×10−319.1×10−31 kg, What is the recoil angle of the electron, if the scattering angle is 52∘52∘?arrow_forwardWhat speed must an electron have if its momentum is to be the same as that of an X-ray photon with a wavelength of 0.35 nm?arrow_forwardA particle has a de Broglie wavelength of 2.80×10−102.80×10−10 m. Then its kinetic energy doubles. What is the particle's new de Broglie wavelength, assuming that relativistic effects can be ignored?arrow_forward
- A photon with wavelength X scatters off an electron at rest, at an angle with the incident direction. The Compton wavelength of the electron Ac = 0.0024 nm. a) For λ = 0.0006 nm and 0 = 53 degrees, find the wavelength X' of the scattered photon in nanometres. b) Obtain a formula for the energy of the electron Ee after collision, in terms of the universal constants h, c and the variables X, X' and Ac. The answer must be expressed in terms of these variables only. (Please enter an algebraic expression using latex format; do not input any numerical values) c) Using the energy conservation condition, find the value of the electron energy Ee after scattering in units of keV. d) Write an algebraic expression for the electron's momentum pe in terms of its energy Ee, its mass me and the speed of light c. e) What is the de Broglie wavelength of the scattered electron ? Express your answer in terms of Ee, me, and X and c. f) Find the value of the de Broglie wavelength of the scattered electron…arrow_forwardX-rays with energy E = 340 keV are incident on a target. The x-rays undergo Compton scattering, and the scattered rays are at an angle of ? = 33.0° with respect to the incident rays. Find the Compton shift (in m) at this angle; the energy (in keV) of the scattered x-ray; and the energy (in keV) of the recoiling electron.arrow_forwardIn some scattering experiments, the speed of the particles is tuned so that their de Broglie wavelength has a specific value. If a wavelength of 0.117 nm is required, how fast must a neutron be traveling to achieve this wavelength?arrow_forward
- A photon of frequency v is scattered by an electron initially at rest. Verify that the maximum kinetic energy of the recoil electron is KEmax = (2h² v/mc²)/(1 + 2 hv/mc²).arrow_forwardIn the Compton scattering, the photon of energy 8.4 MeV is scattered from a free electron of mass 9.1 x 10 -31 kg, What is the recoil angle of the electron, if the scattering angle is 52°? Answer:arrow_forwardThe high-energy photons can undergo Compton scattering off electrons in the tumor. The energy imparted by a photon is a maximum when the photon scatters straight back from the electron. In this process, what is the maximum energy that a photon with the energy described in the passage can give to an electron? (a) 3.8 MeV; (b) 2.0 MeV; (c) 0.40 MeV; (d) 0.23 MeV.arrow_forward
- Show that the maximum kinetic energy of the recoil electron in Compton scattering is given by 2hf mc² K. E.max (electron) = hf · 2hf 1+ mc² At what angles and does this occur? If we detect a scattered electron at angle = 0° of 100 keV, what energy photon was scattered?arrow_forwardThe de-Broglie wavelength of a particle having kinetic energy E is 2. How much extra energy must be given to this particle so that the de-Broglie wavelength reduces to 75% of the initial value ?arrow_forwardA nonrelativistic particle of mass m and charge q is accelerated from rest through a potential difference Δ V (a) Use conservation of energy to find a symbolic expression for the momentum of the particle in terms of m , q, and ΔV (b) Write a symbolic expression for the de Broglie wavelength using the result of part (a). (c) If an electron and proton go through the same potential difference but in opposite directions, which particle will have the shorter wavelength?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning