Statistics for Engineers and Scientists
4th Edition
ISBN: 9780073401331
Author: William Navidi Prof.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.2, Problem 1E
Assume that X and Y are independent measurements with uncertainties σX = 0.3 and σY = 0.2. Find the uncertainties in the following quantities:
- a. 4X
- b. X + 2Y
- c. 2X – 3Y
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Proposition 1.1 Suppose that X1, X2,... are random variables. The following
quantities are random variables:
(a) max{X1, X2) and min(X1, X2);
(b) sup, Xn and inf, Xn;
(c) lim sup∞ X
and lim inf∞ Xn-
(d) If Xn(w) converges for (almost) every w as n→ ∞, then lim-
random variable.
→ Xn is a
Exercise 4.2 Prove that, if A and B are independent, then so are A and B, Ac and
B, and A and B.
8. Show that, if {Xn, n ≥ 1) are independent random variables, then
sup X A) < ∞ for some A.
Chapter 3 Solutions
Statistics for Engineers and Scientists
Ch. 3.1 - The boiling point of water is measured four times....Ch. 3.1 - Two thermometers are calibrated by measuring the...Ch. 3.1 - The weight of an object is given as 67.2 0.3 g....Ch. 3.1 - Prob. 4ECh. 3.1 - A person stands on a bathroom scale. The reading...Ch. 3.1 - A person gets on and off a bathroom scale four...Ch. 3.1 - In a hypothetical scenario, the National Institute...Ch. 3.1 - Prob. 8ECh. 3.1 - A new and unknown weight is weighed on the same...Ch. 3.1 - Prob. 10E
Ch. 3.1 - The length of a rod was measured eight times. The...Ch. 3.2 - Assume that X and Y are independent measurements...Ch. 3.2 - The length of a rod is to be measured by a process...Ch. 3.2 - The volume of a cone is given by V = r2h/3, where...Ch. 3.2 - In the article The Worlds Longest Continued Series...Ch. 3.2 - A cylindrical hole is bored through a steel block,...Ch. 3.2 - A force of F = 2.2 0.1 N is applied to a block...Ch. 3.2 - The period T of a simple pendulum is given by...Ch. 3.2 - The specific gravity of a substance is given by G...Ch. 3.2 - Prob. 10ECh. 3.2 - According to Newtons law of cooling, the...Ch. 3.2 - Prob. 12ECh. 3.2 - Nine independent measurements are made of the...Ch. 3.2 - A certain scale has an uncertainty of 3 g and a...Ch. 3.2 - The volume of a rock is measured by placing the...Ch. 3.2 - A student measures the spring constant k of a...Ch. 3.2 - A certain chemical process is run 10 times at a...Ch. 3.2 - An object is weighed four times, and the results,...Ch. 3.2 - Prob. 19ECh. 3.2 - Prob. 20ECh. 3.3 - Find the uncertainty in Y, given that X = 2.0 0.3...Ch. 3.3 - Given that X and Y are related by the given...Ch. 3.3 - The volume of a cone is given by V = r2h/3, where...Ch. 3.3 - Prob. 4ECh. 3.3 - The period T of a simple pendulum is given by...Ch. 3.3 - The change in temperature of an iron bar brought...Ch. 3.3 - The friction velocity F of water flowing through a...Ch. 3.3 - The refractive index n of a piece of glass is...Ch. 3.3 - The density of a rock will be measured by placing...Ch. 3.3 - The conversion of ammonium cyanide to urea is a...Ch. 3.3 - Prob. 11ECh. 3.3 - Prob. 12ECh. 3.3 - The acceleration g due to gravity is estimated by...Ch. 3.3 - Refer to Exercise 4. Assume that T = 298.4 0.2 K....Ch. 3.3 - Refer to Exercise 5. a. Assume g = 9.80 m/s2...Ch. 3.3 - Refer to Exercise 6. Assume that c = 448 J/kgC and...Ch. 3.3 - Prob. 17ECh. 3.3 - Refer to Exercise 8. Assume the critical angle is...Ch. 3.3 - Refer to Exercise 9. Assume that the mass of the...Ch. 3.3 - Prob. 20ECh. 3.4 - Find the uncertainty in U, assuming that X = 10.0 ...Ch. 3.4 - The volume of a cone is given by V = r2h/3, where...Ch. 3.4 - From a fixed point on the ground, the distance to...Ch. 3.4 - Refer to Exercise 10 in Section 3.2. Assume that ...Ch. 3.4 - When air enters a compressor at pressure P1 and...Ch. 3.4 - One way to measure the water content of a soil is...Ch. 3.4 - Prob. 7ECh. 3.4 - Prob. 8ECh. 3.4 - The Beer-Lambert law relates the absorbance A of a...Ch. 3.4 - In the article Temperature-Dependent Optical...Ch. 3.4 - Refer to Exercise 12 in Section 3.2. Assume that 0...Ch. 3.4 - Prob. 12ECh. 3.4 - Archaeologists studying meat storage methods...Ch. 3.4 - Prob. 14ECh. 3.4 - A cylindrical wire of radius R elongates when...Ch. 3.4 - Prob. 16ECh. 3.4 - Refer to Exercise 16. In an experiment to...Ch. 3.4 - The vertical displacement v of a cracked slurry...Ch. 3.4 - The shape of a bacterium can be approximated by a...Ch. 3.4 - Prob. 20ECh. 3.4 - Refer to Exercise 10 in Section 3.2. Assume that ...Ch. 3.4 - Refer to Exercise 5. Assume that P1 = 15.3 0.2...Ch. 3.4 - Refer to Exercise 7. Assume that p = 4.3 0.1 cm...Ch. 3.4 - Prob. 24ECh. 3.4 - Refer to Exercise 12. Estimate n, and find the...Ch. 3.4 - Refer to Exercise 14. Assume that l = 10.0 cm ...Ch. 3.4 - Prob. 27ECh. 3.4 - Refer to Exercise 16. Assume that T0 = 73.1 0.1F,...Ch. 3.4 - Prob. 29ECh. 3.4 - Prob. 30ECh. 3.4 - Prob. 31ECh. 3 - Prob. 1SECh. 3 - Prob. 2SECh. 3 - Prob. 3SECh. 3 - Prob. 4SECh. 3 - Prob. 5SECh. 3 - Let A and B represent two variants (alleles) of...Ch. 3 - The heating capacity of a calorimeter is known to...Ch. 3 - Sixteen independent measurements were made of the...Ch. 3 - If two gases have molar masses M1 and M2, Grahams...Ch. 3 - A piece of plywood is composed of five layers. The...Ch. 3 - The article Effect of Varying Solids Concentration...Ch. 3 - Prob. 13SECh. 3 - Prob. 14SECh. 3 - Prob. 15SECh. 3 - The mean yield from process A is estimated to be...Ch. 3 - The flow rate of water through a cylindrical pipe...Ch. 3 - Prob. 18SECh. 3 - The decomposition of nitrogen dioxide (NO2) into...Ch. 3 - Prob. 20SECh. 3 - A track has the shape of a square capped on two...Ch. 3 - Prob. 22SECh. 3 - Prob. 23SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- 8- 6. Show that, for any random variable, X, and a > 0, 8 心 P(xarrow_forward15. This problem extends Problem 20.6. Let X, Y be random variables with finite mean. Show that 00 (P(X ≤ x ≤ Y) - P(X ≤ x ≤ X))dx = E Y — E X.arrow_forward(b) Define a simple random variable. Provide an example.arrow_forward17. (a) Define the distribution of a random variable X. (b) Define the distribution function of a random variable X. (c) State the properties of a distribution function. (d) Explain the difference between the distribution and the distribution function of X.arrow_forward16. (a) Show that IA(w) is a random variable if and only if A E Farrow_forward15. Let 2 {1, 2,..., 6} and Fo({1, 2, 3, 4), (3, 4, 5, 6}). (a) Is the function X (w) = 21(3, 4) (w)+711.2,5,6) (w) a random variable? Explain. (b) Provide a function from 2 to R that is not a random variable with respect to (N, F). (c) Write the distribution of X. (d) Write and plot the distribution function of X.arrow_forward20. Define the o-field R2. Explain its relation to the o-field R.arrow_forward7. Show that An → A as n→∞ I{An} - → I{A} as n→ ∞.arrow_forward7. (a) Show that if A,, is an increasing sequence of measurable sets with limit A = Un An, then P(A) is an increasing sequence converging to P(A). (b) Repeat the same for a decreasing sequence. (c) Show that the following inequalities hold: P (lim inf An) lim inf P(A) ≤ lim sup P(A) ≤ P(lim sup A). (d) Using the above inequalities, show that if A, A, then P(A) + P(A).arrow_forward19. (a) Define the joint distribution and joint distribution function of a bivariate ran- dom variable. (b) Define its marginal distributions and marginal distribution functions. (c) Explain how to compute the marginal distribution functions from the joint distribution function.arrow_forward18. Define a bivariate random variable. Provide an example.arrow_forward6. (a) Let (, F, P) be a probability space. Explain when a subset of ?? is measurable and why. (b) Define a probability measure. (c) Using the probability axioms, show that if AC B, then P(A) < P(B). (d) Show that P(AUB) + P(A) + P(B) in general. Write down and prove the formula for the probability of the union of two sets.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Implicit Differentiation Explained - Product Rule, Quotient & Chain Rule - Calculus; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=LGY-DjFsALc;License: Standard YouTube License, CC-BY