University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 88AP
A 65-fringe shift results in a Michelson interferometer when a 42.0-µm film made of an unknown material is placed in one arm. The light source has wavelength 632.9 nm. Identify the material using the indices of refraction found in Table 1.1.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The absolute tolerance is + 0.1
In the figure, light is incident at angle 01= 38° on a
boundary between two transparent materials.
Some of the light travels down through the next
three layers of transparent materials, while some
of it reflects upward and then escapes into the air.
If n = 1.30, n2 = 1.40, n3 = 1.32 and n4 = 1.43, what
is the value of (a) 05 and (b) 04?
Air
14
(a) O5 =
Number
Units
(b) 04 =
Number
Units
The Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the
gas is slowly added to the tube. Assume 580-nm light is used, the tube is 5.40 cm long, and 152 fringe shifts occur as the pressure of the gas in the tube increases to atmospheric pressure. What is
the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to five decimal places.)
4.0
A thin sheet of transparent material has an index of refraction of 1.40 and is 15.0 μm thick. When it is inserted in the light path along one arm of an interferometer, how many fringe shifts occur in the pattern? Assume the wavelength (in a vacuum) of the light used is 600 nm. Hint: The wavelength will change within the material.
Chapter 3 Solutions
University Physics Volume 3
Ch. 3 - Check Your Understanding In the system used in the...Ch. 3 - Check Your Understanding Going further with...Ch. 3 - Check Your Understanding Although m, the number of...Ch. 3 - Young’s double-slit experiment breaks a single...Ch. 3 - Is it possible to create a experimental setup in...Ch. 3 - Why won’t two small sodium lamps, held close...Ch. 3 - Suppose you use the same double slit to perform...Ch. 3 - Why is monochromatic light used in the double slit...Ch. 3 - What effect does increasing the wedge angle have...Ch. 3 - How is the difference in paths taken by two...
Ch. 3 - Is there a phase change in the light reflected...Ch. 3 - In placing a sample on a microscope slide, a glass...Ch. 3 - Answer the above question if the fluid between the...Ch. 3 - While contemplating the food value of a slice of...Ch. 3 - An inventor notices that a soap bubble is dark at...Ch. 3 - A nonreflective coating like the one described in...Ch. 3 - Why is it much more difficult to see interference...Ch. 3 - Describe how a Michelson interferometer can be...Ch. 3 - At what angle is the first-order maximum for...Ch. 3 - Calculate the angle for the third-order maximum of...Ch. 3 - What is the separation between two slits for which...Ch. 3 - Find the distance between two slits that produces...Ch. 3 - Calculate the wavelength of light that has its...Ch. 3 - What is the wavelength of light falling on double...Ch. 3 - At what angle is the fourth-order maximum for the...Ch. 3 - What is the highest-order maximum for 400-nm light...Ch. 3 - Find the largest wavelength of light falling on...Ch. 3 - What is the smallest separation between two slits...Ch. 3 - (a) What is the smallest separation between two...Ch. 3 - (a) If the first-order maximum for monochromatic...Ch. 3 - Shown below is a double slit located a distance x...Ch. 3 - Using the result of the preceding problem, (a)...Ch. 3 - Using the result of the problem two problems...Ch. 3 - In a double-slit experiment, the fifth maximum is...Ch. 3 - The source in Young’s experiment emits at two...Ch. 3 - If 500-nm and 650-nm light illuminates two slits...Ch. 3 - Red light of wavelength of 700 nm falls on a...Ch. 3 - Ten narrow slits are equally spaced 0.25 mm apart...Ch. 3 - The width of bright fringes can be calculated as...Ch. 3 - For a three-slit interference pattern, find the...Ch. 3 - What is the angular width of the central fringe of...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...Ch. 3 - Calculate the minimum thickness of an oil slick on...Ch. 3 - Find the minimum thickness of a soap bubble that...Ch. 3 - A film of soapy water (n=1.33) on top of a plastic...Ch. 3 - What are the three smallest non-zero thicknesses...Ch. 3 - Suppose you have a lens system that is to be used...Ch. 3 - (a) As a soap bubble thins it becomes dark,...Ch. 3 - To save money on making military aircraft...Ch. 3 - A Michelson interferometer has two equal arms. A...Ch. 3 - What is the distance moved by the traveling mirror...Ch. 3 - When the traveling mirror of a Michelson...Ch. 3 - In a Michelson interferometer, light of wavelength...Ch. 3 - A chamber 5.0 cm long with flat, parallel windows...Ch. 3 - For 600-nm wavelength light and a slit separation...Ch. 3 - If the light source in the preceding problem is...Ch. 3 - Red light (=710.nm) illuminates double slits...Ch. 3 - Two sources as in phase and emit waves with =0.42...Ch. 3 - Two slits 4.0106 m apart are illuminated by light...Ch. 3 - Suppose that the highest order fringe that can be...Ch. 3 - The interference pattern of a He-Ne laser light...Ch. 3 - Young’s double-slit experiment is performed...Ch. 3 - A double-slit experiment is to be set up so that...Ch. 3 - An effect analogous to two-slit interference can...Ch. 3 - A hydrogen gas discharge lamp emits visible light...Ch. 3 - Monochromatic light of frequency 5.51014 Hz falls...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - A transparent film of thickness 250 nm and index...Ch. 3 - An intensity minimum is found for 450 nm light...Ch. 3 - A thin film with n=1.32 is surrounded by air. What...Ch. 3 - Repeat your calculation of the previous problem...Ch. 3 - After a minor oil spill, a think film of oil...Ch. 3 - A microscope slide 10 cm long is separated from a...Ch. 3 - Suppose that the setup of the preceding problem is...Ch. 3 - A thin wedge filled with air is produced when two...Ch. 3 - Two identical pieces of rectangular plate glass...Ch. 3 - Two microscope slides made of glass are...Ch. 3 - A good quality camera “lens” is actually a system...Ch. 3 - Constructive interference is observed from...Ch. 3 - A soap bubble is blown outdoors. What colors...Ch. 3 - A Michelson interferometer with a He-Ne laser...Ch. 3 - An experimenter detects 251 fringes when the...Ch. 3 - A Michelson interferometer is used to measure the...Ch. 3 - A 5.08-cm-long rectangular glass chamber is...Ch. 3 - Into one arm of a Michelson interferometer, a...Ch. 3 - The thickness of an aluminum foil is measured...Ch. 3 - The movable mirror of a Michelson interferometer...Ch. 3 - In a thermally stabilized lab, a Michelson...Ch. 3 - A 65-fringe shift results in a Michelson...Ch. 3 - Determine what happens to the double-slit...Ch. 3 - Fifty-one narrow slits are equally spaced and...Ch. 3 - A film of oil on water will appear dark when it is...Ch. 3 - Figure 3.14 shows two glass slides illuminated by...Ch. 3 - Figure 3.14 shows two 7.50-cm-long glass slides...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
23. How many significant figures are there in the following values?
a. 0.05 × 10-4 b. 0.00340
c. 7.2 × 104 ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
10. In rats, gene produces black coat color if the genotype is, but black pigment is not produced if the genoty...
Genetic Analysis: An Integrated Approach (3rd Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The table below shows the index of refraction for BK7 optical glass at several different wavelengths. White light is incident on the top face of a large block of this glass at an ångle of 44° with respect to the normal. If the block is 0.38 m thick, by how many millimeters are beams at wavelengths 2 and 4 separated at the bottom face of the block? Wavelength Number Index of Refraction (nm) 400 1.531 2. 475 1.523 3. 550 1.519 625 1.515 1. 4.arrow_forwardthe light. Problem 4: Light of wavelength 436 nm in air enters a fishbowl filled with water, then exits through the crown- glass wall of the container. a) What is the wavelength of the light in the water? The refraction index for water is 1.333 and for crown-glass 1.52. b) What is the wavelength of the light in the glass? Problem 5: A cylindrical cistern, constructed below ground level, is 3 m in diameter and 2.2 m deep and is filledarrow_forwardA monochromatic light source emits a wavelength of 490 nm in air. When passing through a liquid, the wavelength reduces to 429 nm. What is the liquid's index of refraction? 1.26 1.49 1.14 1.33arrow_forward
- A multi-mode fiber optic has a core index of n = 1.492 and a cladding index of 1.489. The diameter of the core is 30.0 microns. Monochromatic light is focused into one end of a perfectly straight fiber which is 25.0 km long. What will be the difference in arrival time at the far end of the fiber for the axial and marginal rays?arrow_forwardA thin coating is applied to a lens to protect against UV light. The coating strongly reflects light of wavelength 384 nm and strongly transmits light of wavelength 528 nm (i.e. visible light, near the middle of the visible spectrum.) The index of refraction of the coating material is 1.58 and the lens is made of a material with index 1.48. Find the smallest possible thickness for the coating.arrow_forwardA plano-convex lens with radius of curvature R = 3.2 m is in contact with a flat plate of glass. A light source and the observer's eye are both close to the normal, as shown in the figure below. The radius of the 51st bright Newton's ring is found to be 9.4 mm. What is the wavelength of the light produced by the source? nm 2//1 Need Help? Read It 8:36 PM 4/11/2021arrow_forward
- You observe, at normal incidence, light of wavelength 483 nm reflected off the (air) interface between a plano-convex lens (curved side down) touching a flat piece of glass. You see a dark central spot surrounded by rings of darkness. The smallest ring has radius 187 μm. If the lens is made of glass with refractive index 1.532, what is the focal length of the lens in cm?arrow_forwardPleaase don't provide handwritten solution .....arrow_forwardA plate of glass (n=1.50) has a thickness of 2.50cm. Light is incident on the glass from air (n=1.00), making an angle of 37 degrees with respect to the normal. How far does the light ray travel in the glass before exiting the opposite side of the plate?arrow_forward
- A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80°. What is the angular separation between the refracted red and refracted blue beams while they are in the glass? (The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.) O 0.27° 0.33° O 0.36° O 0.46° O 0.54°arrow_forwardA 5.00cm-thick layer of oil is sandwiched between a 1.00 cm-thick sheet of glass and a 2.00 cm-thick sheet of polystyrene plastic. How long (in nanoseconds) does it take for light incident perpendicular to the glass to pass through this 8.00 cm-thick sandwich?arrow_forwardFrom air (n=1), white light enters a prism with an incidence angle of 75.00° as measured from the normal. With this information, find the angular separation of the dispersed colors - red with a wavelength of 660 nm (n=1.488) and blue with a wavelength of 470 nm (n=1.499). a. 0.358° b. 0.241° C. 0.12° d. 0.074°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY