Figure 3.14 shows two glass slides illuminated by monochromatic light incident perpendicularly. The top slide touches the bottom slide at one end and rests on a 0.100-mm-diameter hair at the other end, forming a wedge of air. (a) How far apart are the dark bands, if the slides are 7.50 cm long and 589-nm light is used? (b) Is there any difference if the slides are made from crown or flint glass? Explain. Figure 3.14 (a) The rainbow-color bands are produced by thin-film interference in the air between the two glass slides. (b) Schematic of the paths taken by rays in the wedge of air between the slides. (c) If the air wedge is illuminated with monochromatic light, bright and dark bands are obtained rather than repeating rainbow colors.
Figure 3.14 shows two glass slides illuminated by monochromatic light incident perpendicularly. The top slide touches the bottom slide at one end and rests on a 0.100-mm-diameter hair at the other end, forming a wedge of air. (a) How far apart are the dark bands, if the slides are 7.50 cm long and 589-nm light is used? (b) Is there any difference if the slides are made from crown or flint glass? Explain. Figure 3.14 (a) The rainbow-color bands are produced by thin-film interference in the air between the two glass slides. (b) Schematic of the paths taken by rays in the wedge of air between the slides. (c) If the air wedge is illuminated with monochromatic light, bright and dark bands are obtained rather than repeating rainbow colors.
Figure 3.14 shows two glass slides illuminated by monochromatic light incident perpendicularly. The top slide touches the bottom slide at one end and rests on a 0.100-mm-diameter hair at the other end, forming a wedge of air. (a) How far apart are the dark bands, if the slides are 7.50 cm long and 589-nm light is used? (b) Is there any difference if the slides are made from crown or flint glass? Explain.
Figure 3.14 (a) The rainbow-color bands are produced by thin-film interference in the air between the two glass slides. (b) Schematic of the paths taken by rays in the wedge of air between the slides. (c) If the air wedge is illuminated with monochromatic light, bright and dark bands are obtained rather than repeating rainbow colors.
13.87 ... Interplanetary Navigation. The most efficient way
to send a spacecraft from the earth to another planet is by using a
Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure
and destination planets are circular, the Hohmann transfer orbit is an
elliptical orbit whose perihelion and aphelion are tangent to the
orbits of the two planets. The rockets are fired briefly at the depar-
ture planet to put the spacecraft into the transfer orbit; the spacecraft
then coasts until it reaches the destination planet. The rockets are
then fired again to put the spacecraft into the same orbit about the
sun as the destination planet. (a) For a flight from earth to Mars, in
what direction must the rockets be fired at the earth and at Mars: in
the direction of motion, or opposite the direction of motion? What
about for a flight from Mars to the earth? (b) How long does a one-
way trip from the the earth to Mars take, between the firings of the
rockets? (c) To reach Mars from the…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.