Principles Of Geotechnical Engineering, Si Edition
Principles Of Geotechnical Engineering, Si Edition
9th Edition
ISBN: 9781305970953
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
100%
Book Icon
Chapter 3, Problem 3.4P

(a)

To determine

Calculate the dry unit weight of the soil.

(a)

Expert Solution
Check Mark

Answer to Problem 3.4P

The dry unit weight of the soil is 108.22lb/ft3_.

Explanation of Solution

Given information:

The diameter of the cylindrical mold (d) is 4in..

The height of the cylindrical mold (h) is 4.58in..

The weight of the compacted soil (W) is 4lb.

The moisture content (w) is 12%.

The specific gravity of the soil solids (Gs) is 2.72.

Calculation:

Calculate the volume of the mold (V) using the relation.

V=14πd2h

Substitute 4in. for d and 4.58in. for h.

V=14π×42×4.58=57.554in.3×(1ft12in.)3=0.033ft3

Calculate the dry unit weight of the soil (γd) using the relation.

γd=WV(1+w)

Substitute 4 lb for W, 0.033ft3 for V, and 12% for w.

γd=40.033×(1+12100)=40.033×1.12=108.22lb/ft3

Hence, the dry unit weight of the soil is 108.22lb/ft3_.

(b)

To determine

Calculate the void ratio of the soil.

(b)

Expert Solution
Check Mark

Answer to Problem 3.4P

The void ratio of the soil is 0.568_.

Explanation of Solution

Given information:

The diameter of the cylindrical mold (d) is 4in..

The height of the cylindrical mold (h) is 4.58in..

The weight of the compacted soil (W) is 4lb.

The moisture content (w) is 12%.

The specific gravity of the soil solids (Gs) is 2.72.

Calculation:

Refer to part (a).

The dry unit weight of the soil (γd) is 108.22lb/ft3.

Consider the unit weight of water (γw) is 62.4lb/ft3.

Calculate the void ratio of the soil (e) using the relation.

e=Gsγwγd1

Substitute 2.72 for Gs, 108.22lb/ft3 for γd, and 62.4lb/ft3 for γw.

e=2.72×62.4108.221=169.728108.221=1.5681=0.568

Hence, the void ratio of the soil is 0.568_.

(c)

To determine

Calculate the degree of saturation of the soil.

(c)

Expert Solution
Check Mark

Answer to Problem 3.4P

The degree of saturation of the soil is 57.4%_.

Explanation of Solution

Given information:

The diameter of the cylindrical mold (d) is 4in..

The height of the cylindrical mold (h) is 4.58in..

The weight of the compacted soil (W) is 4lb.

The moisture content (w) is 12%.

The specific gravity of the soil solids (Gs) is 2.72.

Calculation:

Refer to part (b).

The void ratio of the soil is 0.568.

Consider the unit weight of water (γw) is 62.4lb/ft3.

Calculate the degree of saturation (S) using the relation.

S=wGse

Substitute 2.72 for Gs, 12% for w, and 0.568 for e.

S=12100×2.720.568=0.32640.568=0.574×100%=57.4

Hence, the degree of saturation of the soil is 57.4%_.

(d)

To determine

Calculate the additional water needed to achieve 100% saturation in the soil sample.

(d)

Expert Solution
Check Mark

Answer to Problem 3.4P

The required additional water to achieve 100% saturation in the soil sample is 0.316lb_.

Explanation of Solution

Given information:

The diameter of the cylindrical mold (d) is 4in..

The height of the cylindrical mold (h) is 4.58in..

The weight of the compacted soil (W) is 4lb.

The moisture content (w) is 12%.

The specific gravity of the soil solids (Gs) is 2.72.

Calculation:

Refer to part (b).

The void ratio of the soil is 0.568.

Consider the unit weight of water (γw) is 62.4lb/ft3.

Calculate the saturated unit weight of the soil (γsat) using the relation.

γsat=(Gs+e)γw1+e

Substitute 2.72 for Gs, 0.568 for e, and 62.4lb/ft3 for γw.

γsat=(2.72+0.568)×62.41+0.568=205.17121.568=130.8lb/ft3

Calculate the unit weight (γ) using the relation.

γd=WV

Substitute 4 lb for W and 0.033ft3 for V.

γ=40.033=121.21lb/ft3

Calculate the additional water needed to achieve 100% saturation using the relation.

Additional water needed=(γsatγ)V

Substitute 130.8lb/ft3 for γsat, 121.21lb/ft3 for γ, and 0.033ft3 for V.

Additional water needed=(130.8121.21)×0.033=9.59×0.033=0.316lb

Therefore, the additional water needed is 0.316lb_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A compaction test was conducted in the laboratory and the following information was obtained: • The weight of the compacted soil specimen (including the mold) was determined to be 3815 • The volume of the mold = 1/30 ft³ (944 cm³) • The weight of the mold = 2050 g • The water content in the soil was determined to be 9.1% Find the dry unit weight of the soil (in units of kN/m³).
(c) A sample of clay having a mass of 675 gm was coated with paraffin wax. The combined mass of the clay and the wax was found to be 682 gm. The volume was found by immersion in water as 345 ml. The sample was then broken to open. The water content and specific gravity of solids were found to be 15 % and 2.70 respectively. Calculate the bulk density of soil, its void ratio, and degree of saturation. Take specific gravity of wax as 0.89.
Homework #3 The results of a standard Proctor test are given in the following table. a. Determine the maximum dry unit weight of compaction and the optimum moisture content. Given: mold volume =943.3 cm'. b. Determine the void ratio and the degree of saturation at the optimum moisture content. Given: G, = 2.68. Trial no. Weight of moist soil in the mold (kg) Moisture content (%) 1.78 5.0 1.87 7.5 3 1.95 10.0 4 1.98 12.5 5 2.02 1.97 15 17.5 7 1.90 20.0
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning