Concept explainers
Consider the streamlines over a circular cylinder as sketched at the right of Figure 3.26. Single out the first three streamlines flowing over the top of the cylinder. Designate each streamline by its stream function,
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Fundamentals of Aerodynamics
Additional Engineering Textbook Solutions
Thermodynamics: An Engineering Approach
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
DeGarmo's Materials and Processes in Manufacturing
Statics and Mechanics of Materials
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
- Consider a frictionless, 2-D flow field with V= Axi–Ayj; g = -gk. The pressure, P(0, 0, 0) = P0. Find an expression for the pressure field P(x, y, z).Let ρ be the constant density of the fluid.arrow_forwardA two-dimensional incompressible flow field is defined by the velocity components u= 2V(플 - v = -2v2 where V and L are constants. If they exist, find the stream function and velocity potential.arrow_forwardConsider the velocity field represented by V = K (yĩ + xk) Rotation about z-axis isarrow_forward
- Question 4: The velocity field of a flow is given by V = axyi + by'j where a = 1 m's' and b = - 0.5 m's". The coordinates are in meters. Determine whether the flow field is three-, two-, or one-dimensional. Find the equations of the streamlines and sketch several streamlines in the upper half plane (2.arrow_forwardA VISCOUS FLUID FLOWS BETWEEN TWO PARALLEL AND INFINITELY LARGE PLATES KEPT AT A DISTANCE 2H FROM EACH OTHER. THE UPPER PLATE IS AT Y = H AND THE LOWE... A viscous fluid flows between two parallel and infinitely large plates kept at a distance 2h from each other. The upper plate is at y = h and the lower plate is at y = - h. The considered fluid flows mono directionally along the x-direction under a constant pressure gradient K = -dP/dx. The transverse profile of velocity is given by : U(y) = K (h² - y²) U (y) = (h-y) U(y) = (h² - y²) U(y) = (y²) U(y) = K (h-y) 2h EU(y)arrow_forwardThe velocity components in the x and y directions are given by 3 u = Axy3 - x2y, v = xy2 -- The value of a for a possible flow field involving an incompressible fluid isarrow_forward
- The stream function is given by y =-4xy. Then the magnitude of velocity at point (2,4) is m/s.arrow_forward1. Find the equation of a streamline that passes through the point P(1, 4, -2) in the field E=2e5x[y(5x+1)ax+xay]E=2e5x[y(5x+1)ax+xay].arrow_forwardThe velocity vector in a flow is given by :V=-3xi-4yj-7zk Determine the stream equation passing through a point L(4,2,3)arrow_forward
- 1. For a flow in the xy-plane, the y-component of velocity is given by v = y2 −2x+ 2y. Find a possible x-component for steady, incompressible flow. Is it also valid for unsteady, incompressible flow? Why? 2. The x-component of velocity in a steady, incompressible flow field in the xy-plane is u = A/x. Find the simplest y-component of velocity for this flow field.arrow_forwardQuestion 4: The velocity field of a flow is given by V = aryi + byj where a = 1 m's' and b = - 0.5 m's". The coordinates are in meters. Determine whether the flow field is three-, two-, or one-dimensional. Find the equations of the streamlines and sketch several streamlines in the upper half plane (arrow_forwardA fluid has a velocity field defined by u = x + 2y and v = 4 -y. In the domain where x and y vary from -10 to 10, where is there a stagnation point? Units for u and v are in meters/second, and x and y are in meters. Ox = 2 m. y = 1 m x = 2 m, y = 0 No stagnation point exists x = -8 m, y = 4 m Ox = 1 m, y = -1 m QUESTION 6 A one-dimensional flow through a nozzle has a velocity field of u = 3x + 2. What is the acceleration of a fluid particle through the nozzle? Assume u, x and the acceleration are all in consistent units. O 3 du/dt 9x + 6 1.5 x2 + 2x O Oarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY