Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
9th Edition
ISBN: 9781259989452
Author: Hayt
Publisher: Mcgraw Hill Publishers
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 24E
The circuit shown in Fig. 3.65 includes a device known as an op amp. This device has two unusual properties in the circuit shown: (1) Vd = 0 V, and (2) no current can flow into either input terminal (marked “−” and “+” inside the symbol), but it can flow through the output terminal (marked “OUT”). This seemingly impossible situation—in direct conflict with KCL—is a result of power leads to the device that are not included in the symbol. Based on this information, calculate Vout. (Hint: Two KVL equations are required, both involving the 5 V source.)
FIGURE 3.65
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q
Circuit Theory: I have this following circuit but its not producing the correct output. My input is a 0-3.3 V sine wave at 1 kHz. My output at the speaker should also be a 0-3.3 V sine wave, but its giving me the wrong output. How do I fix this circuit using transistor(s) or any other components? How do I actually apply my knowledge of circuits to this real world problem that I'm stuck?
topic is circuits
Chapter 3 Solutions
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
Ch. 3.2 - 3.1 (a) Count the number of branches and nodes in...Ch. 3.3 - Determine ix and vx in the circuit of Fig. 3.7....Ch. 3.3 - For the circuit of Fig. 3.9, if vR1=1V, determine...Ch. 3.3 - Determine vx in the circuit of Fig. 3.11.Ch. 3.4 - In the circuit of Fig. 3.12b, vs1 = 120 V, vs2 =...Ch. 3.4 - 3.6 In the circuit of Fig. 3.14, find the power...Ch. 3.5 - Determine v in the circuit of Fig. 3.16.Ch. 3.5 - For the single-node-pair circuit of Fig. 3.18,...Ch. 3.6 - Determine the current i in the circuit of Fig....Ch. 3.6 - Determine the voltage v in the circuit of Fig....
Ch. 3.6 - Determine whether the circuit of Fig. 3.25...Ch. 3.7 - 3.12 Determine a single-value equivalent...Ch. 3.7 - 3.13 Determine i in the circuit of Fig. 3.29....Ch. 3.7 - Determine v in the circuit of Fig. 3.31 by first...Ch. 3.7 - 3.15 For the circuit of Fig. 3.33, calculate the...Ch. 3.8 - 3.16 Use voltage division to determine vx in the...Ch. 3.8 - In the circuit of Fig. 3.40, use resistance...Ch. 3 - Referring to the circuit depicted in Fig. 3.45,...Ch. 3 - Referring to the circuit depicted in Fig. 3.46,...Ch. 3 - For the circuit of Fig. 3.47: (a) Count the number...Ch. 3 - For the circuit of Fig. 3.47: (a) Count the number...Ch. 3 - Refer to the circuit of Fig. 3.48, and answer the...Ch. 3 - A local restaurant has a neon sign constructed...Ch. 3 - Referring to the single-node diagram of Fig. 3.50,...Ch. 3 - Determine the current labeled I in each of the...Ch. 3 - In the circuit shown in Fig. 3.52, the resistor...Ch. 3 - The circuit of Fig. 3.53 represents a system...Ch. 3 - In the circuit depicted in Fig. 3.54, ix is...Ch. 3 - For the circuit of Fig. 3.55 (which employs a...Ch. 3 - Determine the current labeled I3 in the circuit of...Ch. 3 - Study the circuit depicted in Fig. 3.57, and...Ch. 3 - Prob. 15ECh. 3 - For the circuit of Fig. 3.58: (a) Determine the...Ch. 3 - For each of the circuits in Fig. 3.59, determine...Ch. 3 - Use KVL to obtain a numerical value for the...Ch. 3 - Prob. 19ECh. 3 - In the circuit of Fig. 3.55, calculate the voltage...Ch. 3 - Determine the value of vx as labeled in the...Ch. 3 - Consider the simple circuit shown in Fig. 3.63....Ch. 3 - (a) Determine a numerical value for each current...Ch. 3 - The circuit shown in Fig. 3.65 includes a device...Ch. 3 - The circuit of Fig. 3.12b is constructed with the...Ch. 3 - Obtain a numerical value for the power absorbed by...Ch. 3 - Compute the power absorbed by each element of the...Ch. 3 - Compute the power absorbed by each element in the...Ch. 3 - Kirchhoffs laws apply whether or not Ohms law...Ch. 3 - Referring to the circuit of Fig. 3.70, (a)...Ch. 3 - Determine a value for the voltage v as labeled in...Ch. 3 - Referring to the circuit depicted in Fig. 3.72,...Ch. 3 - Determine the voltage v as labeled in Fig. 3.73,...Ch. 3 - Although drawn so that it may not appear obvious...Ch. 3 - Determine the numerical value for veq in Fig....Ch. 3 - Determine the numerical value for ieq in Fig....Ch. 3 - For the circuit presented in Fig. 3.76. determine...Ch. 3 - Determine the value of v1 required to obtain a...Ch. 3 - (a) For the circuit of Fig. 3.78, determine the...Ch. 3 - What value of IS in the circuit of Fig. 3.79 will...Ch. 3 - (a) Determine the values for IX and VY in the...Ch. 3 - Determine the equivalent resistance of each of the...Ch. 3 - For each network depicted in Fig. 3.82, determine...Ch. 3 - (a) Simplify the circuit of Fig. 3.83 as much as...Ch. 3 - (a) Simplify the circuit of Fig. 3.84, using...Ch. 3 - Making appropriate use of resistor combination...Ch. 3 - Calculate the voltage labeled vx in the circuit of...Ch. 3 - Determine the power absorbed by the 15 resistor...Ch. 3 - Calculate the equivalent resistance Req of the...Ch. 3 - Show how to combine four 100 resistors to obtain...Ch. 3 - Prob. 51ECh. 3 - Prob. 52ECh. 3 - Prob. 53ECh. 3 - Prob. 54ECh. 3 - Prob. 55ECh. 3 - Prob. 56ECh. 3 - Prob. 57ECh. 3 - Prob. 58ECh. 3 - Prob. 59ECh. 3 - Prob. 60ECh. 3 - With regard to the circuit shown in Fig. 3.98,...Ch. 3 - Delete the leftmost 10 resistor in the circuit of...Ch. 3 - Consider the seven-element circuit depicted in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 3: Breadboard connections of a circuit are given in the figure below. 1- 2- GND .... ...... ...... 0.1µF 10mH 10mH 1kn a) Draw the schematic diagram of the circuit. b) Since we can observe the input signal with Channel 1 and the output signal with Channel 2, what does this circuit do? Write the type and purpose of the circuit. c) Plot the frequency versus transfer function by calculating the required frequencies. Channel 1+ Function generator Channel 2+arrow_forwardElectrical Engineering How do I create a circuit that does the following. The output voltage Vout is at OV originally. If the input voltage Vin changes from OV to 1V, the Vout should also goes to 1V an will keep as 1V no matter how Vin changes later on. plz help draw the circuit diagram!arrow_forwardDraw and label a voltage divider that generates 0.5V from an input of 1.5V. Then draw and label a current divider that generates 1.25A from an input of1.0A. Pleaseclearlydefine/label the value of all variables (e.g. resistances). If a solution does not exist, then simply state so.arrow_forward
- Question 4 Figure Q4a shows a basic current mirror structure (in its 'sink' form) which is designed to provide the current Ir at its output Io by operating transistors Ti and T2 identically : VDD IR IR T3 T1 T2 T1 T2 OV OV Figure Q4a : Current Mirror Figure Q4b : Widlaw Mirror a) Show that the current relationship of the circuit in figure Q4a is ( where Ic = BIb for both transistors and T1 and T2 are matched) : IR 2 =|1+ If the two transistors in figure Q4a are not matched in terms of b) their Vbe's compensation can be provided by placing a resistor 'R' in one of the emitter legs of the transistors. Assuming Vbez > Vbel by 0.05V and Ir = Io = 10mA sketch an appropriate structure and value for R. c) Describe how the 'offset' compensation referred to in Q4b occurs in practice for a 741 op-amp ? d) Sketch the 'Source' form of figure Q4a e) Figure Q4b shows the buffered Widlar mirror. Briefly describe how the addition of transistor T3 improves operation.arrow_forwardUTILIZE THE CIRCUIT ( NEED ONLY HANDWRITTEN SOLUTION PLEASE OTHERWISE DOWNVOTE).arrow_forwardQ: For the circuit shown below, calculate the currentrsng through each resistor for the following different input supply volta (9V, 11V,13V), then measure these currents using Multisim applicati for the same input supply voltages (9V, 11V,13V). R = 100 0 IT Vs R4 =400 O R3 = 300 Q R2 = 200 0arrow_forward
- I need to design a power supply 110v , with an output between 6 and 9v. I did a design and I implemented a resistor after the bridge as a surge protector for the diode. I need to know if this is the right design and I need some calculations for the elements to provide an output between 6 and 9v.arrow_forwardASAP, TYIAarrow_forwardIn Resistive Transducer principle the resistance of a resistive element can be varied by several methods. Select one: True Falsearrow_forward
- Calculate the expression of the output resistance in terms of R in the circuit given below (hint: You can also find the resistance value by using one of the simulation methods. You can give the value instead of R and see the result on the screen.arrow_forwardQ3) Draw the output signal of the circuit shown in Figure 1 R1 ww 2000 R4 m 5KQ V4 R2 U1 2V 10k0 5 V1 2Vrms 1Hz 0 Figure 1 R3 m 10k0 Voutarrow_forwardExplain the operation of the opamp circuit in the figure. In what situations does the LED illuminate; which cases remain dim? What is the type (function) of the circuit? +12V 10K V. 10K 470 A v O -12V LEDarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Thevenin's Theorem; Author: Neso Academy;https://www.youtube.com/watch?v=veAFVTIpKyM;License: Standard YouTube License, CC-BY