An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 1MC
A net force ___. (3.1)
- (a) can produce motion
- (b) is a scalar quantity
- (c) is capable of producing a change in velocity
- (d) both (a) and (c)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
1) A man pushes a 20.0 kg lawn mower with a force of 80.0 N directed along the handle, which is inclined at 30.0° to the horizontal as shown in the figure below. (a) If he moves at constant velocity, what is the impeding force due to the ground? (b) What force along the handle would produce an acceleration of 1.25 m/s' given the same impeding force?
I need to show all work draw picture
A tractor of mass 5.40 tonne pulls a 1.40-tonne crate up a hill with a slope angle of 12.0° above the horizontal at a constant speed of 11.0 m/s. (1 tonne is 1000 kg).
(a) What acceleration would the tractor have on a level road at that speed? Ignore any frictional losses.
(b) Repeat part (a), but now consider that the coefficient of kinetic friction between the crate and the level road is 0.300. Assume that all frictional losses come from the friction between the crate being pulled and the road, and not from the tractor.
You throw a rock of mass 0.750 kg straight up in the air with an initial speed of 20.0 m/s. Throughout the flight of the rock assume there’s a constant air resistance force of magnitude 1.25 N acting on it. The trajectory of the rock is vertically up and down, with no horizontal motion.
(a) What is the maximum height reached by the rock?
(b) What is the speed of the rock when it returns to the point of release?
Chapter 3 Solutions
An Introduction to Physical Science
Ch. 3.1 - Does a force always produce motion?Ch. 3.1 - What is the condition for motion when more than...Ch. 3.2 - If you were moving with a constant velocity in...Ch. 3.2 - How can the inertias of objects be compared?Ch. 3.3 - How are force and motion related?Ch. 3.3 - Which is generally greater, static friction or...Ch. 3.3 - Prob. 3.1CECh. 3.3 - On the surface of Mars, the acceleration due to...Ch. 3.4 - Whats the difference between an action and a...Ch. 3.4 - Prob. 2PQ
Ch. 3.5 - What keeps the Moon in orbit around the Earth?Ch. 3.5 - Prob. 2PQCh. 3.5 - Prob. 3.3CECh. 3.6 - Prob. 1PQCh. 3.6 - Prob. 2PQCh. 3.7 - When is the linear momentum of a system conserved?Ch. 3.7 - Prob. 2PQCh. 3.7 - Suppose you were not given the values of the...Ch. 3.7 - Prob. 3.5CECh. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - Prob. FMCh. 3 - Prob. GMCh. 3 - Prob. HMCh. 3 - Prob. IMCh. 3 - Prob. JMCh. 3 - Prob. KMCh. 3 - Prob. LMCh. 3 - Prob. MMCh. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - Prob. PMCh. 3 - Prob. QMCh. 3 - KEY TERMS 1. force (3.1) 2. unbalanced, or net,...Ch. 3 - Prob. SMCh. 3 - A net force ___. (3.1) (a) can produce motion (b)...Ch. 3 - What is a possible state of an object in the...Ch. 3 - What term refers to the tendency of an object to...Ch. 3 - A net force can produce ___. (3.3) (a) an...Ch. 3 - According to Newtons second law of motion, when an...Ch. 3 - Mass is related to an objects ___. (3.3) (a)...Ch. 3 - Prob. 7MCCh. 3 - Which is true of the force pair of Newtons third...Ch. 3 - Which is true about the acceleration due to...Ch. 3 - What is true about the constant G? (3.5) (a) It is...Ch. 3 - A childs toy floats in a swimming pool. The...Ch. 3 - If a submerged object displaces an amount of...Ch. 3 - If a submerged object displaces a volume of liquid...Ch. 3 - A change in linear momentum requires which of the...Ch. 3 - Angular momentum is conserved in the absence of...Ch. 3 - A force is a quantity that is ___ of producing...Ch. 3 - Forces are ___ quantities. (3.1)Ch. 3 - Prob. 3FIBCh. 3 - Prob. 4FIBCh. 3 - The inertia of an object is related to its ___....Ch. 3 - Prob. 6FIBCh. 3 - Prob. 7FIBCh. 3 - Prob. 8FIBCh. 3 - Prob. 9FIBCh. 3 - Prob. 10FIBCh. 3 - Prob. 11FIBCh. 3 - Milk is ___ dense than the cream that floats on...Ch. 3 - The total linear momentum is not conserved if...Ch. 3 - Prob. 14FIBCh. 3 - Prob. 1SACh. 3 - Prob. 2SACh. 3 - Consider a child holding a helium balloon in a...Ch. 3 - An old party trick is to pull a tablecloth out...Ch. 3 - Prob. 5SACh. 3 - When a paper towel is torn from a roll on a rack,...Ch. 3 - It is said that Newtons first law can be derived...Ch. 3 - Can an object be at rest if forces are being...Ch. 3 - Prob. 9SACh. 3 - What is the unbalanced force acting on a moving...Ch. 3 - The coefficient of kinetic friction is generally...Ch. 3 - A 10-lb rock and a 1-lb rock are dropped...Ch. 3 - When a rocket blasts off, is it the fiery exhaust...Ch. 3 - There is an equal and opposite reaction for every...Ch. 3 - When a person pushes on a wall, the wall pushes on...Ch. 3 - Two masses are attached to a spring scale as shown...Ch. 3 - Prob. 17SACh. 3 - The gravitational force is said to have an...Ch. 3 - Explain why the acceleration due to gravity on the...Ch. 3 - An astronaut has a mass of 70 kg when measured on...Ch. 3 - Prob. 21SACh. 3 - In Chapter 1.6 in the discussion of the...Ch. 3 - What is a major consideration in constructing a...Ch. 3 - Prob. 24SACh. 3 - Prob. 25SACh. 3 - Is it easier for a large person to float in a lake...Ch. 3 - Prob. 27SACh. 3 - Prob. 28SACh. 3 - Explain how the conservation of linear momentum...Ch. 3 - Prob. 30SACh. 3 - When a high diver in a swimming event springs from...Ch. 3 - Visualize the connections for the descriptions of...Ch. 3 - Astronauts walking on the Moon are seen bounding...Ch. 3 - A person places a bathroom scale in the center of...Ch. 3 - Prob. 3AYKCh. 3 - Prob. 4AYKCh. 3 - In a washing machine, water is extracted from...Ch. 3 - When you push on a heavy swinging door to go into...Ch. 3 - When unable to loosen the lug nut on an automobile...Ch. 3 - What is the net force of a 5.0-N force and an...Ch. 3 - A horizontal force of 250 N is applied to a...Ch. 3 - Determine the net force necessary to give an...Ch. 3 - A force of 2.1 N is exerted on a 7.0-g rifle...Ch. 3 - A 1000-kg automobile is pulled by a horizontal tow...Ch. 3 - A 6.0-N net force is applied to a 15-kg object....Ch. 3 - What is the weight in newtons of a 6.0-kg package...Ch. 3 - What is the force in newtons acting on a 4.0-kg...Ch. 3 - (a) What is the weight in newtons of a 120-lb...Ch. 3 - A 75-kg person is standing on a scale in an...Ch. 3 - Two 3.0-kg physical science textbooks on a...Ch. 3 - (a) What is the force of gravity between two...Ch. 3 - How would the force of gravity between two masses...Ch. 3 - The separation distance between two 1.0-kg masses...Ch. 3 - (a) Determine the weight on the Moon of a person...Ch. 3 - Suppose an astronaut has landed on Mars. Fully...Ch. 3 - A childs cubic play block has a mass of 120 g and...Ch. 3 - A ball with a radius of 8.00 cm and a mass of 600...Ch. 3 - Calculate the linear momentum of a pickup truck...Ch. 3 - A small car with a mass of 900 kg travels...Ch. 3 - Two ice skaters stand together as illustrated in ...Ch. 3 - For the couple in Fig. 3.28, suppose you were told...Ch. 3 - A comet goes around the Sun in an elliptical...Ch. 3 - Taking the density of air to be 1.29 kg/m3, what...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For all questions, assume concepts such as friction or air resistance are negligible, unless stated otherwise in the question. A spring with spring constant k=600 N/m is compressed by 10 cm and launches a ball vertically into the air. The mass of the ball is 2.0 kg. Determine how high the ball will be launched.arrow_forwardI need help with a University Physics 1 (Algebra of Vectors) - The problem is described in the image below:arrow_forwardA skateboarder with mass m, = 44 kg is standing at the top of a ramp which is h, = 3.9 m above the ground. The skateboarder then jumps on his skateboard and descends down the ramp. His speed at the bottom of the ramp is v= 6.7 m/s. Part (b) The ramp makes an angle e with the ground, where 0= 30°. Write an expression for the magnitude of the friction force, fr. between the ramp and the skateboarder. F;= cos(e) sin(0) 8 9 HOME d 1 2 3 hy m. + END Vf vol BACKSPACE CLEAR Part (c) When the skateboarder reaches the bottom of the ramp, he continues moving with the speed vonto a flat surface covered with grass. The friction between the grass and the skateboarder brings him to a complete stop after 5.00 m. Calculate the magnitude of the friction force, Fgras: in newtons, between the skateboarder and the grass. Fgras:=arrow_forward
- A wagon with its passenger sits at the top of a hill. A strong wind suddenly rolls the wagon 188m down a 28 degree incline to the bottom of the hill. What is the wagons speed in m/s? Assume friction is negligible.arrow_forwardA feather falls at constant velocity a vertical distance of 123.8 m. If the mass of the feather is 39.04 g then(a) how much is done by gravity, and (b) air resistance?arrow_forwardThree youths push a 40.0-kg block of ice so that it begins to coast on a frozen lake. With an initial speed Vi of 3.00 m/s, the block of ice now moves up an icy ramp at the edge of the lake. Neglecting air resistance and in the absence of any friction between the ice block and the frozen lake and ramp, use the CMEP to calculate how high up the ramp (h in the figure) the block of ice moves before stopping. As a suggestion, use the base of the ramp as GZ. 0.204 m 0.625 m 0.459 m 0.511 m 0.165 m 0.270 m O O Oarrow_forward
- A skateboarder with mass m, = 44 kg is standing at the top of a ramp which is h, = 3.9 m above the ground. The skateboarder then jumps on his skateboard and descends down the ramp. His speed at the bottom of the ramp is v= 6.7 m/s. Part (b) The ramp makes an angle e with the ground, where 0 = 30°. Write an expression for the magnitude of the friction force, f, between the ramp and the skateboarder. cos(e) sin(e) 8 HOME a 5 6 1 2 3 h, P . END m, + Vf vol BACKSPACE CLEAR Part (c) When the skateboarder reaches the bottom of the ramp, he continues moving with the speed vfonto a flat surface covered with grass. The friction between the grass and the skateboarder brings him to a complete stop after 5.00 m. Calculate the magnitude of the friction force, Fgras; in newtons, between the skateboarder and the grass. Fgrazs =arrow_forwardA speedboat weighing 644 lbs is powered by a constant force of 40 lbs. Friction between the boat and the water is negligible, but there is wind resistance proportional to the velocity of the boat and is 10 lbs. for a speed of 5 fps. Assuming the boat started from rest, find the speed after 10 sec.arrow_forwardThe only force acting on an object of mass 2.00 kg moving along the x-axis is shown in the figure. If the speed vx is +2.0 m / s at t = 0, what is the speed at t = 4.0 s?arrow_forward
- Please Asaparrow_forwardAn object with mass m = 34 kg is pushed with 452 N of force to be moved across a distance of 4.6 m on a surface with friction. Initially the object is moving at vi = 0.82 m/s and after being moved across 4.6 m, the final speed is 2.5 m/s. What is the magnitude of the frictional force acting on the object in the unit of N?arrow_forwardAfter they are released, the large mass, m2, falls a distance h and hits the floor, while the small mass, m1, rises the same distance h. (a) Find the speed of the masses just before m2 lands. Assume the ropes and pulley have negligible mass and that friction can be ignored. (Use any variable or symbol stated above along with the following as necessary: g for the acceleration due to gravity. Do not substitute numerical values; use variables only.) v = (b) Evaluate (in m/s) your answer to part (a) for the case where h = 1.5 m, m1 = 3.2 kg, and m2 = 4.3 kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY