Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 176P
Hot water is flowing at an average velocity of 1.5 ins through a cast iron pipe
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water flows in a pipe of 0.0475 m inside diameter at a velocity of 1.5 m/s. Calculate the heat transfer coefficient if the temperature of the water is 60OC and 40OC at the inlet and the outlet of the pipe respectively, and the inside wall temperature of the pipe is 35OC. The physical properties must be calculated at the average water temperature. The thermal conductivity of the pipe at average temperature is 0.639 W/mOC.
A 0.5-ampere current is flowing through a long electrically conducting cylindrical rod.
The diameter of the rod is 6 mm, the electrical resistance of the rod is R = 2000 /m,
and k =0.9 W/m K for the rod. The rod is encased in a 2-mm thick Pyrex tube and a
20°C liquid is flowing over the outer surface of the Pyrex tube. The convection heat
transfer coefficient for the liquid h= 800 W/m2 . K. The interfacial conductance (contact
resistance) at the interface between the rod and the Pyrex tube is h = 1200 W/m² - K.
a) Compute the rate of heat generation in the rod and use it compute the volumetric
rate of heat generation.
b) Find the temperature drop across the interface between the outer surface of the rod
and the inner surface of the Pyrex tube.
c) Find the temperature at the center of the rod.
In a thermal power plant, a horizontal copper pipe of "D" diameter, "L" length and thickness 1.7 cm enters into the boiler that has the thermal conductivity as 0.3 W/mK. The boiler is maintained at 107degreeC and temperature of the water that flows inside the pipe is at 31degreeC. If the energy transfer (Q) is 124925 kJ in 7 hours. Determine the Heat transfer rate, Surface area of the pipe and Diameter & Length of the pipe, if D = 0.012 L.Change in Temperature (in K)
Heat Transfer Rate (in W)
Surface Area of the Pipe (m2)
Pipe Length (in m)
Pipe Diameter (in mm)
Chapter 3 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 38EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 40EPCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 47CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 49PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 51PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 62EPCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 70EPCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 80EPCh. 3 - Prob. 81EPCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86EPCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - Prob. 99CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 103PCh. 3 - Prob. 104PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 119PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 121PCh. 3 - Prob. 122EPCh. 3 - Prob. 123EPCh. 3 - Prob. 124PCh. 3 - Prob. 125PCh. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 138PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 141PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146EPCh. 3 - Prob. 147PCh. 3 - Prob. 148PCh. 3 - Prob. 149PCh. 3 - Prob. 150PCh. 3 - Prob. 151PCh. 3 - Prob. 152PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 154PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 158CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Prob. 165PCh. 3 - Prob. 166PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 169EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 173PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 187PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 198PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 200PCh. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 206PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 208PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 216PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 219PCh. 3 - Prob. 220PCh. 3 - Prob. 221PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 223PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 225PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 231PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a large plane wall of thickness 2L=20mm. Both surfaces of the wall are convectively cooled by the surrounding coolant at To = 250°C with a heat transfer coefficient of h= 1100 W/m².K. A fuel element of a nuclear reactor is considered in the shape of this large plane wall with given constant thermal properties as thermal conductivity k = 30 W/m.K and a = 5 x 10-6m²/s. It is known that heat is generated uniformly within the element at a volumetric rate of q = 1x 107W /m³. A departure from the steady-state conditions associated with normal operation will occur if there is a change in the generation rate. Consider a sudden change to q2 = 2 x 107W/m³. Assuming steady one-dimensional heat transfer along the wall, use the explicit finite- difference method to show how to calculate temperature To at 1.2 sec and temperature Ts at 1.5 sec. (show which equation to use and the calculations in details)arrow_forwardOil is flowing through a 45 mm inside diameter iron pipe (k=16 W/mK) at 1.2 m/s. The thickness of pipe is 8 mm. It is being heated by steam outside the pipe, and the steam-film coefficient may be taken as 12 kW/m2 oC. At a particular point along the pipe the oil is at 40 oC, its density is 880 kg/m3, its viscosity is 2.1 cP, its thermal conductivity is 0.135 W/moC and its specific heat is 2.17 J/g oC. a) What is the overall heat transfer coefficient at this point, based on the inside area of the pipe? b) If the steam temperature is 120oC, what is the heat transfer rate at this point, based on the outside area of the pipe? c) Calculate the inside and outside wall temperatures of pipe when the steam temperature is 120oC and bulk temperature of oil is 40oarrow_forwardHot water flows through a PVC (k = 0.092 W/m·K) pipe whose inner diameter is 2 cm and outer diameter is 2.5 cm. The temperature of the interior surface of this pipe is 35°C and the temperature of the exterior surface is 20°C. determine the rate of heat transfer per unit of pipe lengtharrow_forward
- Warm air is blown over the inner surface of the windshield of an automobile to defrost ice accumulated on the outer surface. The windshield has a thickness of 5 mm and thermal conductivity of 1.4 W/m-K. The outside ambient temperature is -10°C and the convection heat transfer coefficient is 200 W/m2-K, while the ambient temperature inside the automobile is 25°C. Determine the value of the convection heat transfer coefficient for the warm air blowing over the inner surface of the windshield necessary to cause the accumulated ice to begin melting.arrow_forwardConsider a steam pipe of length 15 ft, inner radius 2 in., outer radius 2.4 in., and thermal conductivity 7.2 Btu/hr-ft-°F. Steam is flowing through the pipe at an average temperature of 250°F, and the average convection heat transfer coefficient on the inner surface is given to be 1.25 Btu/hr-ft2-"F. If the average temperature on the outer surfaces of the pipe is 160*F, determine the rate of heat loss from the steam through the pipe. ANSWER: Btu/hrarrow_forwardSteam at 200ºC flows in a cast iron pipe (k = 80 W/m⋅ºC) whose inner and outer diameters are D1 = 0.20 m and D2 = 0.22 m, respectively. The pipe is covered with 2-cm-thick glass wool insulation (k = 0.05 W/m⋅ºC). The heat transfer coefficient at the inner surface is 75 W/m2⋅ºC. If the temperature at the interface of the iron pipe and the insulation is 194ºC, the temperature at the outer surface of the insulation isarrow_forward
- heat transferarrow_forwardA steam is flowing through a 5.7 m long of steel tube that has inner and outer radii of r, = 0.015 and r, 0,024 m, and a thermal conductivity of 0.14 W/m.K. The steam and the outer surface of the tube is maintained at constant temperature of 150 °C and the air = 25 °C, h = 0.35 W/m2.k) is surrounding the tube. To prevent the outer surface of the steel from the environmental conditions, a material that has a thermal conductivity of 0.014 W/m.k is wrapped over the outer surface of the steel. What is the maximum heat transfer from the steam to the air (W)? NOTE: Enter your answer. Answer Air Th Steam Steel Tr 111 Toarrow_forward1. Water enters a thin-shelled 4-cm-diameter, 200-m-long pipe at 7°C at a rate of 0.98 kg/s and leaves at 8°C. The pipe is exposed to ambient air at 30°C with a heat transfer coefficient of 9 W/m²K. If the pipe is to be insulated with glass wool insulation (k= 0.05 W/mK) in order to decrease the temperature rise of water to 0.25°C, determine the required thickness of the insulation. Insulation Water Larrow_forward
- Hot water at an average temperature of 80°C and an average velocity of 1.5 m/s is flowing through a 25-m section of a pipe that has an outer diameter of 5 cm. The pipe extends 2 m in the ambient air above the ground, dips into the ground (k= 1.5 W/m-°C) vertically for 3 m, and continues horizontally at this depth for 20 m more before it enters thenext building. The first section of the pipe is exposed to the ambient air at 8°C with a heat transfer coefficient of 22 W/m2.°C. If the surface of the ground is covered with snow at 0°C, determine: (a) Heat loss from the part of the tube that is on the ground. (b) Heat loss for vertical part of the tube. The shape factor, and the rate of heat loss on the horizontal part that is in the ground. (d) Total rate of heat loss from the hot water. (e) The temperature drop of the hot water as it flows through this 25-m section of the wall.arrow_forward3- Pipes with inner and outer diameter of 50mm and 60mm, respectively, are used for transporting superheated vapor in a manufacturing plant. The pipes with thermal conductivity of 16 W/m.K are connected together by flanges with combined thickness of 20mm and outer diameter of 90mm. Air condition surrounding the pipes has a temperature of 25C and a convection heat transfer coefficient of 10 W/m².K. If the inner surface temperature of the pipe is maintained at a constant temperature of 150C, determine the temperature at the base of the flange and the rate if heat loss through the flange. Air, 25 °C h= 10 W/m².ºC D;= 90 mm D;, = 50 mm T; = 150 °C Pipe, k = 16 W/m•°C D,= 60 mm t= 20 mmarrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license