Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 29, Problem 28P
You are working for a company that creates special magnetic environments. Your new supervisor has come from the financial side of the organization rather than the technical side. He has promised a client that the company can provide a device that will create a magnetic field inside a cylindrical chamber that is directed along the cylinder axis at all points in the chamber and increases in the axial direction as the square of the value of y, where y is the in the axial direction and y = 0 is at the bottom end of the cylinder. Prepare a calculation to show that the field requested by your supervisor and promised to a client is impossible.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 29 Solutions
Physics for Scientists and Engineers
Ch. 29.1 - Consider the magnetic field due to the current in...Ch. 29.2 - A loose spiral spring carrying no current is hung...Ch. 29.3 - Prob. 29.3QQCh. 29.3 - Prob. 29.4QQCh. 29.4 - Consider a solenoid that is very long compared...Ch. 29 - Calculate the magnitude of the magnetic field at a...Ch. 29 - You are working as an expert witness in a civil...Ch. 29 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 29 - Prob. 4PCh. 29 - Prob. 5P
Ch. 29 - Consider a flat, circular current loop of radius R...Ch. 29 - Prob. 7PCh. 29 - One long wire carries current 30.0 A to the left...Ch. 29 - Determine the magnetic field (in terms of I, a,...Ch. 29 - Prob. 10PCh. 29 - Two long, parallel wires carry currents of I1 =...Ch. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - You are part of a team working in a machine parts...Ch. 29 - Why is the following situation impossible? Two...Ch. 29 - Prob. 17PCh. 29 - Niobium metal becomes a superconductor when cooled...Ch. 29 - The magnetic coils of a tokamak fusion reactor are...Ch. 29 - A packed bundle of 100 long, straight, insulated...Ch. 29 - The magnetic field 40.0 cm away from a long,...Ch. 29 - Prob. 22PCh. 29 - A long solenoid that has 1 000 turns uniformly...Ch. 29 - A certain superconducting magnet in the form of a...Ch. 29 - Prob. 25PCh. 29 - You are given a certain volume of copper from...Ch. 29 - Prob. 27PCh. 29 - You are working for a company that creates special...Ch. 29 - A solenoid of radius r = 1.25 cm and length =...Ch. 29 - The magnetic moment of the Earth is approximately...Ch. 29 - A 30.0-turn solenoid of length 6.00 cm produces a...Ch. 29 - Why is the following situation impossible? The...Ch. 29 - Suppose you install a compass on the center of a...Ch. 29 - Prob. 34APCh. 29 - A nonconducting ring of radius 10.0 cm is...Ch. 29 - Prob. 36APCh. 29 - A very large parallel-plate capacitor has uniform...Ch. 29 - Two circular coils of radius R, each with N turns,...Ch. 29 - Prob. 39APCh. 29 - Two circular loops are parallel, coaxial, and...Ch. 29 - As seen in previous chapters, any object with...Ch. 29 - Review. Rail guns have been suggested for...Ch. 29 - Prob. 43APCh. 29 - An infinitely long, straight wire carrying a...Ch. 29 - Prob. 45CPCh. 29 - We have seen that a long solenoid produces a...Ch. 29 - A wire carrying a current I is bent into the shape...Ch. 29 - Prob. 48CPCh. 29 - Prob. 49CPCh. 29 - Prob. 50CPCh. 29 - The magnitude of the force on a magnetic dipole ...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Niels Bohr’s 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29 × 10−11 m and its speed is 2.19 × 106 m/s. (a) What is the magnitude of the magnetic moment due to the electron’s motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?arrow_forwardThe velocity vector of a singly charged helium ion (mHe = 6.64 1027 kg) is given by v=4.50105m/s. The acceleration of the ion in a region of space with a uniform magnetic field is 8.50 1012 m/s2 in the positive y direction. The velocity is perpendicular to the field direction. What are the magnitude and direction of the magnetic field in this region?arrow_forwardA long, solid, cylindrical conductor of radius 3.0 cm carries a current of 50 A distributed uniformly over its cross-section. Plot the magnetic field as a function of the radial distance r from the center of the conductor.arrow_forward
- (a) A cosmic ray proton moving toward the Earth at 5.00107m/s experiences a magnetic force of 1.701016N. What is the strength of the magnetic field it there is a 45° angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.arrow_forwardAt a particular instant an electron is traveling west to east with a kinetic energy of 10 keV. Earth's magnetic field has a horizontal component of 1.8105 T north and a vertical component of 5.0105 T down. (a) What is the path of the election? (b) What is the radius of curvature of the path?arrow_forwardWhat is the Earths magnetic flux through a. a basketball, b. a hula hoop standing up perpendicularly on its rim at the North Pole, and c. a hula hoop lying on the ground at the North Pole?arrow_forward
- A toroid with an inner radius of 20 cm and an outer radius of 22 cm is tightly wound with one layer of wire that has a diameter of 0.25 mm. (a) How many turns are there on the toroid? (b) If the current through the toroid windings is 2.0 A, what is the strength of the magnetic field at the center of the toroid?arrow_forwardOne common type of cosmic ray is a proton traveling at close to the speed of light. If the proton is traveling downward, as shown in Figure P30.14, at a speed of 1.00 107 m/s, what are the magnitude and direction of the magnetic field at point B?arrow_forwardAn electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forward
- A wire ismade into a circular shape of radius R and pivoted along a central support.The two ends of the sire are touching a banish that is connected to a &power source. The stricture is between the poles of a magnet such that we can assume there is a uniform magnetic field on the wire. In terms of a coordinate system with origin at the center ofthe ring, magneticfieldisBx=B0,By=Bz= 0. and the ring rotates about the z-axis. Find the torque on the ring siren it is not in the xz-plane.arrow_forwardA wire carrying a current I is bent into the shape of an exponential spiral, r = e, from = 0 to = 2 as suggested in Figure P29.47. To complete a loop, the ends of the spiral are connected by a straight wire along the x axis. (a) The angle between a radial line and its tangent line at any point on a curve r = f() is related to the function by tan=rdr/d Use this fact to show that = /4. (b) Find the magnetic field at the origin. Figure P29.47arrow_forwardA long, straight wire of radius R caries a current I that is distributed uniformly over the cross-section of the wire. At what distance from the axis of the wire is the magnitude of the magnetic field a maximum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY