College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 55GP
A thin glass slide (n = 1.53) that is 0.485 μm thick and surrounded by air is illuminated by a monochromatic
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thin glass slide (nnn = 1.53) that is 0.685 μmμm thick and surrounded by air is illuminated by a monochromatic electromagnetic wave. The wave is incident along the normal to the slide.
A) What is the lowest frequency of the wave that will produce an intensified reflected wave?
Express your answer with the appropriate units.
B) What is the lowest frequency of the wave that will produce a cancelled reflected wave?
Express your answer with the appropriate units.
A circular radar antenna on a Coast Guard ship has a diameter of 2.10 m and radiates at a frequency of 18.0 GHz. Two small boats are located 5.00 km away from the ship. How close together could the boats be and still be detected as two objects?
An antenna with power P = 2.2 × 103 W is radiating spherical electromagnetic waves. Consider a place which is d = 145 m away from the antenna.
a) Express the average intensity of the wave, I, in terms of P and d.
b) Find Emax^2 in terms of P, d, c, and μ0.
Chapter 26 Solutions
College Physics (10th Edition)
Ch. 26 - Could an experiment similar to Youngs two-slit...Ch. 26 - You shine monochromatic light on two narrow slits...Ch. 26 - Would the headlights of a distant car form a...Ch. 26 - If a two-slit interference experiment were done...Ch. 26 - Prob. 6CQCh. 26 - Prob. 7CQCh. 26 - Around harbors, where oil from boat engines is on...Ch. 26 - What happens to the width of the central bright...Ch. 26 - A very thin soap film (n = 1.33), whose thickness...Ch. 26 - Suppose monochromatic light with a wavelength A...
Ch. 26 - Optical telescopes having a principal mirror only...Ch. 26 - Two sources of waves are at A and B in Figure...Ch. 26 - Two sources of waves are at A and B in Figure...Ch. 26 - To obtain the greatest resolution from a...Ch. 26 - A monochromatic beam of laser light falls on a...Ch. 26 - When a thin oil film spreads out on a puddle...Ch. 26 - A laser beam of wavelength 500 nm is shone through...Ch. 26 - A film contains a single thin slit of width a When...Ch. 26 - Light of wavelength A strikes a pane of glass of...Ch. 26 - Two thin parallel slits are a distance d apart....Ch. 26 - Laser light of wavelength A passes through a thin...Ch. 26 - A light oeam st'ikes a pane of glass as shown in...Ch. 26 - Light of wavelength and frequency f passes...Ch. 26 - Prob. 1PCh. 26 - A person with a radio-wave receiver starts out...Ch. 26 - Radio interference. Two radio antennas A and B...Ch. 26 - Two speakers that are 10.0 m apart produce...Ch. 26 - Suppose that the situation is the same as in the...Ch. 26 - Coherent light of wavelength 525 nm passes through...Ch. 26 - Coherent light from a sodium-vapor lamp is passed...Ch. 26 - Young's experiment is performed with light of...Ch. 26 - Coherent light of frequency 6 32 1014 Hz passes...Ch. 26 - Coherent light with wavelength 600 nm passes...Ch. 26 - Two slits spaced 0.450 mm apart are placed 75.0 cm...Ch. 26 - Coherent light that contains two wavelengths 660...Ch. 26 - Two thin parallel slits that are 0.0116 mm apart...Ch. 26 - The walls of a soap bubble have about the same...Ch. 26 - What is the thinnest soap film (excluding the case...Ch. 26 - A thin film of polystyrene of refractive index...Ch. 26 - Conserving energy. The lead architect on the...Ch. 26 - Nonglare glass. When viewing a piece of art that...Ch. 26 - The lenses of a particular set of binoculars have...Ch. 26 - A plate of glass 9.00 cm long is placed in contact...Ch. 26 - Two rectangular pieces of plane glass are laid one...Ch. 26 - A researcher measures the thickness of a layer of...Ch. 26 - Compact disc player. A compact disc (CD) is read...Ch. 26 - A beam of laser light of wavelength 632.8 nm fails...Ch. 26 - Parallel rays of green mercury light with a...Ch. 26 - Parallel light rays with a wavelength of 600 nm...Ch. 26 - Monochromatic light from a distant source is...Ch. 26 - Red light of wavelength 633 nm from a helium-neon...Ch. 26 - Light of wavelength 633 nm from a distant source...Ch. 26 - Doorway diffraction. Diffraction occurs for all...Ch. 26 - Light of wavelength 585 nm falls on a slit 0 0666...Ch. 26 - A glass sheet measuring 10.0 cm 25.0 cm is...Ch. 26 - A laser beam of unknown wavelength passes through...Ch. 26 - A laser beam of wavelength 600.0 nm is incident...Ch. 26 - When laser light of wavelength 632.8 nm passes...Ch. 26 - A diffraction grating has 5580 lines/cm When a...Ch. 26 - Monochromatic light is at normal incidence on a...Ch. 26 - Set Up: The maxima are located by dsin= m, where d...Ch. 26 - Light of wavelength 631 nm passes through a...Ch. 26 - If a diffraction grating produces a third-order...Ch. 26 - A converging lens 7.20 cm in diameter has a focal...Ch. 26 - A reflecting telescope is used to observe two...Ch. 26 - Two satellites at an altitude of 1200 km are...Ch. 26 - Resolution of telescopes. Due to blurring caused...Ch. 26 - Resolution of the eye, I. Even if the lenses of...Ch. 26 - Resolution of the eye, II. The maximum resolution...Ch. 26 - Spy satellites? Assume that a spy satellite in...Ch. 26 - Two identical audio speakers connected to the same...Ch. 26 - Suppose you illuminate two thin slits by...Ch. 26 - Coating eyeglass lenses. Eyeglass lenses can be...Ch. 26 - Sensitive eyes. You have just put some medical...Ch. 26 - || A wildlife photographer uses a moderate...Ch. 26 - Thickness of human hair. Although we have...Ch. 26 - An oil tanker spills a large amount of oil (n = 1...Ch. 26 - A thin glass slide (n = 1.53) that is 0.485 m...Ch. 26 - Searching for planets around other stars. If an...Ch. 26 - You need a diffraction grating that will disperse...Ch. 26 - Set Up: Interference occurs due to the path...Ch. 26 - A physics student performs Youngs double-slit...Ch. 26 - The professor then adjusts the apparatus. The...Ch. 26 - The professor returns the apparatus to the...Ch. 26 - The professor again returns the apparatus to its...Ch. 26 - The professor once again returns the apparatus to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
24.7 Skills for applying the wave model of light
59. Determine body cell size Light of 630 nm wavelength from a...
College Physics
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
Starting from rest, a hollow ball rolls down a ramp inclined at angle to the horizontal. Find an expression fo...
Essential University Physics: Volume 1 (3rd Edition)
What is the change in internal energy of a car if you put 12.0 gal of gasoline into its tank? The energy conten...
College Physics
The magnitude of the charge on each of the point charge.
Physics (5th Edition)
7. Block B in FIGURE EX7.7 rests on a surface for which the static and kinetic coefficients of friction are 0.6...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many helium atoms, each with a radius of about 31 pm, must be placed end to end to have a length equal to one wavelength of 470 nm blue light?arrow_forwardFigure P24.13 shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 50.0 m and the electric field vibrates in the xy plane with an amplitude of 22.0 V/m. Calculate (a) the frequency of the wave and (b) the magnetic field B when the electric field has its maximum value in the negative y direction. (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and , and with its magnitude in the form B=Bmaxcos(kxt) Figure P24.13 Problems 13 and 64.arrow_forwardIn Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forward
- A point source emits monochromatic electromagnetic waves into air uniformly in all directions.At a distance of 5 m away from the source you detect the wave with an electric field amplitude of 20 V/m. Determine the amplitude of the electric field (in V/m) at a distance 40 m.arrow_forwardA 0.5-MHz antenna carried by an airplane flying over the ocean surface generates a wave that approaches the water surface in the form of a normally incident plane wave with an electric- field amplitude of 3,000 (V/m). Seawater is characterized by &r=72, µr = 1, and o = 4 (S/m). The plane is trying to communicate a message to a submarine submerged at a depth d below the water surface. If the submarine's receiver requires a minimum signal amplitude of 0.01 (µV/m), what is the maximum depth d to which successful communication is still possible?arrow_forwardProblem 1: a. Determine the polarization state of a plane EM wave with electric field E = 3 sin (ot – Bz +30°) a; + 4 cos (@t – Bz +45°) ay b. Prove that a plane linearly polarized wave can be resolved into two circularly polarized wave traveling in the same direction but with opposite polarization orientations.arrow_forward
- Electromagnetic wave of unknown wavelength passes through the slit of width a =3.79 µm and the first minimum is detected at angular position 0 =6.82°. What is the wavelength of the electromagnetic wave? Provide your answer in nanometers, round it to one decimal place.arrow_forwardA dish antenna with a diameter of 15.0 m receives a beam of radio radiation at normal incidence. Theradio signal is a continuous wave with an electric field given by:E = 0.75 sin[(0.838/m)x − (2.51 × 108/s)t] N/C.Here, x is in meters and t is in seconds. Assume that all the radiation that falls on the dish is absorbed.(a) Calculate the speed of the radiation. Don’t assume it must be equal to c: use the equation above tocalculate this speed.(b) Calculate the amplitude of the magnetic field of this wave.(c) Calculate the Poynting flux of the radiation.(d) Suppose the beam that is entering this dish has the same diameter as the dish. Suppose a pulse ofradiation that lasts for 10.0 ns travels along the beam and into the dish. This pulse has an energy density of1.0 × 10−9 J/m3. How many Joules from the pulse does the dish absorb?(e) The Sun has a surface temperature of 5770 K, a radius of 6.96 × 105 km, an average distance from Earth of1.496 × 108 km, and radiates e/m radiation into space…arrow_forwardThe US Navy communicates with submerged submarines using frequency v= 76 Hertz radio waves. What is the wavelength knowing the seawater has a refractive index of n= 1.34?arrow_forward
- Chapter 25: Problem 10: An electromagnetic wave with frequency f = 7 × 10¹⁵ Hz is first transmitting in vacuum and then transmits in water. The index of refraction of water is nw = 1.3. a) Find the wave length of the wave in vacuum, λ, in terms of f and and the speed of light c. b) Solve for the numerical value of λ in m. c) Find the wavelength of the wave in water, λw, in terms of f, c, and nw. d) Solve for the numerical value of λw in m.arrow_forwardNonearrow_forwardA point source emits monochromatic electromagnetic waves into air uniformly in all directions. At a distance of 5 m away from the source you detect the wave with an electric field amplitude of 20 V/m. Determine the amplitude of the electric field (in V/m) at a distance 40 m. Moving to another question will save this response.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY