Concept explainers
Find (a) the equivalent capacitance of the capacitors in Figure P26.26, (b) the charge on each capacitor, and (c) the potential difference across each capacitor.
(a)
The equivalent capacitance of the capacitors.
Answer to Problem 26.26P
The equivalent capacitance of the capacitors in the system is
Explanation of Solution
Given: The figure given below shows the arrangement of capacitors.
Figure 1
Write the equation for equivalent capacitance in the series combination.
Here,
Substitute
Conclusion:
Therefore, the equivalent capacitance of the capacitors in the system is
(b)
The charge on each capacitor.
Answer to Problem 26.26P
The charge on
Explanation of Solution
Write the equation for charge on capacitor
Here,
Substitute
Thus, the charge on
The charge on
The charge on capacitor
Thus, the charge on
Write the equation for charge on capacitor
Here,
Substitute
Thus, the charge on
Write the equation for charge on capacitor
Here,
Substitute
The charge on
Conclusion:
Therefore, the charge on
(c)
The potential difference across each capacitor.
Answer to Problem 26.26P
The potential difference across all the capacitors are same and equal to
Explanation of Solution
Write the equation for potential difference across capacitor
Here,
Substitute
Thus, the potential difference across
The potential difference across
The potential difference across capacitor
Thus, the potential difference across
Write the equation for potential difference across capacitor
Here,
Substitute
Thus, the potential difference across
The potential difference across the
The potential difference across capacitor
The potential difference across
Conclusion:
Therefore, the potential difference across all the capacitors are same and equal to
Want to see more full solutions like this?
Chapter 26 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Given the arrangement of capacitors in Figure P27.23, find an expression for the equivalent capacitance between points a and b. Figure P27.23 Problems 23 and 24.arrow_forwardFigure P27.75 shows four capacitors with CA = 4.00 F, CB = 8.00 F. CC = 6.00 F. and CD = 5.00 F connected across points a and b, which have potential difference Vab = 12.0 V. a. What is the equivalent capacitance of the four capacitors? b. What is the charge on each of the four capacitors?arrow_forwardFind the equivalent capacitance between points a and b in the combination of capacitors shown in Figure P20.51. Figure P20.51arrow_forward
- A parallel-plate capacitor has square plates of side s = 2.50 cm and plate separation d = 2.50 mm. The capacitor is charged by a battery to a charge Q = 4.00 C, after which the battery is disconnected. A porcelain dielectric ( = 6.5) is then inserted a distance y = 1.00 cm into the capacitor (Fig. P27.88). Hint: Consider the system as two capacitors connected in parallel. a. What is the effective capacitance of this capacitor? b. How much energy is stored in the capacitor? c. What are the magnitude and direction of the force exerted on the dielectric by the plates of the capacitor? Figure P27.88arrow_forwardA pair of capacitors with capacitances CA = 3.70 F and CB = 6.40 F are connected in a network. What is the equivalent capacitance of the pair of capacitors if they are connected a. in parallel and b. in series?arrow_forwardFor the system of capacitors shown in Figure P16.41, find (a) the equivalent capacitance of the system, (b) the charge on each capacitor, and (c) the potential difference across each capacitor. Figure P16.41 Problems 41 and 60.arrow_forward
- What If? The two capacitors of Problem 13 (C1 = 5.00 F and C2 = 12.0 F) are now connected in series and to a 9.00-Y battery. Find (a) the equivalent capacitance of the combination. (b) the potential difference across each capacitor, and (c) the charge on each capacitor.arrow_forward(a) Find the equivalent capacitance between points a and b for the group of capacitors connected as shown in Figure P20.44. Take C1 = 5.00 F, C2 = 10.0 F, and C3 = 2.00 F. (b) What charge is stored on C3 if the potential difference between points a and b is 60.0 V? Figure P20.44arrow_forwardFour capacitors are connected as shown in Figure P20.45. (a) Find the equivalent capacitance between points a and b. (b) Calculate the charge on each capacitor, taking Vab = 15.0 V. Figure P20.45arrow_forward
- Four capacitors are connected as shown in Figure P16.48. (a) Find the equivalent capacitance between points a and b. (b) Calculate the charge on each capacitor, taking Vab = 15.0 V. Figure P16.48arrow_forwardThree capacitors are connected to a battery as shown in Figure P20.50. Their capacitances are C1 = 3C, C2 = C, and C3 = 5C. (a) What is the equivalent capacitance of this set of capacitors? (b) State the ranking of the capacitors according to the charge they store from largest to smallest. (c) Rank the capacitors according to the potential differences across them from largest to smallest. (d) What If? Assume C3 is increased. Explain what happens to the charge stored by each capacitor. Figure P20.50arrow_forward(i) A battery is attached to several different capacitors connected in parallel. Which of the following statements is true? (a) All capacitors have the same charge, and the equivalent capacitance is greater than the capacitance of any of the capacitors in the group, (b) The capacitor with the largest capacitance carries the smallest charge, (c) The potential difference across each capacitor is the same, and the equivalent capacitance is greater than any of the capacitors in the group. (d) The capacitor with the smallest capacitance carries the largest charge. (e) The potential differences across the capacitors are the same only if the capacitances are the same, (ii) The capacitors are reconnected in series, and the combination is again connected to the battery. From the same choices, choose the one that is true.arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning