Concept explainers
An expression for
Answer to Problem 61P
An expression for
Explanation of Solution
The path of the ray in the quarter circle is shown in the Figure.
Consider the triangle
Here,
Using Pythagorean theorem, write the expression for
Apply Snell’s law at the point
Here,
Solve the equation (III) for
Using trigonometric relation, write the expression for
Consider the triangle
Here,
Solve the equation (VI).
Apply Snell’s law at the point
Use equation (I), (II), (IV), and (V) in (VIII), and solve for
Solve the equation (I) for
Solve the equation (IV).
Use equation (X) and (XI) in the equation
Conclusion:
Therefore, an expression for
Want to see more full solutions like this?
Chapter 25 Solutions
Principles of Physics: A Calculus-Based Text
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardLight is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardConsider a light ray that enters a pane of glass with air on one side and water on the other side as shown in Figure P38.21. The light ray experiences refraction at the first interface when it enters the glass from the water and again at the second interface when it exits the glass into the air. Assume the index of refraction of the glass is 1.54. For a ray of light, find the angle of incidence 1 in the water such that the ray experiences total internal reflection when it strikes the glassair interface on the other side. FIGURE P38.21arrow_forward
- A light ray is incident on an interface between water (n = 1.333) and air (n = 1.0002926) from within the air. If the angle of incidence in the air is 30.0, what is the angle of the refracted ray in the water?arrow_forwardA Lucite slab (n = 1.485) 5.00 cm in thickness forms the bottom of an ornamental fish pond that is 40.0 cm deep. If the pond is completely filled with water, what is the apparent thickness of the Lucite plate when viewed from directly above the pond?arrow_forwardFigure P23.28 shows a curved surface separating a material with index of refraction n1 from a material with index n2. The surface forms an image I of object O. The ray shown in red passes through the surface along a radial line. Its angles of incidence and refraction are both zero, so its direction does not change at the surface. For the ray shown in blue, the direction changes according to n1 sin 1 = n2 sin 2. For paraxial rays, we assume 1 and 2 are small, so we may write n1 tan 1 n2 tan 2. The magnification is defined as M = h/h. Prove that the magnification is given by M = n1q/n2p. Figure P23.28arrow_forward
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardA transparent cylinder of radius R = 2.00 m has a mirroredsurface on its right half, as shown in Figure P22.55. A light ray traveling in air is incident on the left side of the cylinder. Theincident light ray and the exiting light ray are parallel, andd = 2.00 m. Determine the index of refraction of the material.arrow_forwardIn an ultra-low-temperature experiment, a collection of sodium atoms enter a special state called a Bose-Einstein condensate in which the index of refraction is 1.57E7. What is the speed of light in this condensate?arrow_forward
- Figure P22.59 shows the path of a beam of light through severallayers with different indices of refraction. (a) If Θ1 = 30.0°,what is the angle Θ2 of the emerging beam? (b) What must the incident angle Θ1 be to have total internal reflection at thesurface between the medium with n = 1.20 and the mediumwith n = 1.00?arrow_forwardA light beam is traveling through an unknown substance. When it strikes a boundary between that substance and the air (nair ≈1), the angle of reflection is 26.0° and the angle of refraction is 41.0°. What is the index of refraction n of the substance? n =arrow_forwardThe drawing shows a ray of light traveling through three materials whose surfaces are parallel to each other. The refracted rays (but not the reflected rays) are shown as the light passes through each material. A ray of light strikes the a-b interface at a 50.0° angle of incidence. The index of refraction of material a is na = 1.20. The angles of refraction in materials b and care, respectively, 40.4° and 58.2°. Find the indices of refraction in these two media. nb = Number nc = Number i i Units Units Q b > > сarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning