Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 13P
(a)
To determine
The speed of the laser beam.
(b)
To determine
The frequency of the laser beam.
(c)
To determine
The
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A ray of sunlight traveling through water (n=1.32 - 1.34 across the visible spectrum) has an
incident angle of 80° when it encounters a transparent aquarium wall with index of refraction
n=1.2. There is air with index n=1 on the other side of the wall and the wall surfaces are
parallel. Which statement below is true?
Select one:
a. Light emerges on the other side of the wall traveling parallel to the incident ray.
b. Light emerges on the other side of the wall but different colors now travel in different directions.
c. Light emerges on the other side of the wall and is now completely polarized.
d. The light is completely reflected at the first interface.
e. The light enters into the transparent wall bot is completely reflected at the second interface.
A light ray is incident at 45° on a glass block immersed inside a liquid of
refractive index nL = 1.33 as shown in the figure below. In this configuration, the
refractive ray skims the bottom surface. Determine the refractive index of the
glass, ng.
ng
45°
ng = 1.63
ng = 1.7
ng = 1.48
ng = 1.51
O ng = 1.57
A light ray is incident at 45° on a glass block immersed
inside a liquid of refractive index nį = 1.33 as shown in
the figure below. In this configuration, the refractive
ray skims the bottom surface. Determine the refractive
index of the glass, ng.
ng
45°
1.66
1.55
O 1.69
1.49
1.63
1.58
Chapter 25 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 25.3 - Prob. 25.1QQCh. 25.4 - If beam is the incoming beam in Active Figure...Ch. 25.4 - Light passes from a material with index of...Ch. 25.4 - Prob. 25.4QQCh. 25.5 - Prob. 25.5QQCh. 25.7 - Prob. 25.6QQCh. 25.7 - Prob. 25.7QQCh. 25 - Prob. 1OQCh. 25 - Prob. 2OQCh. 25 - What happens to a light wave when it travels from...
Ch. 25 - Prob. 4OQCh. 25 - The index of refraction for water is about 43....Ch. 25 - Prob. 6OQCh. 25 - Light traveling in a medium of index of refraction...Ch. 25 - Prob. 8OQCh. 25 - The core of an optical fiber transmits light with...Ch. 25 - Prob. 10OQCh. 25 - A light ray travels from vacuum into a slab of...Ch. 25 - Prob. 12OQCh. 25 - Prob. 13OQCh. 25 - Prob. 14OQCh. 25 - Prob. 1CQCh. 25 - Prob. 2CQCh. 25 - Prob. 3CQCh. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - Prob. 7CQCh. 25 - Prob. 8CQCh. 25 - Prob. 9CQCh. 25 - Prob. 10CQCh. 25 - Prob. 11CQCh. 25 - Prob. 12CQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - An underwater scuba diver sees the Sun at an...Ch. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - A ray of light is incident on a flat surface of a...Ch. 25 - A laser beam is incident at an angle of 30.0 from...Ch. 25 - Prob. 13PCh. 25 - A light ray initially in water enters a...Ch. 25 - Find the speed of light in (a) flint glass, (b)...Ch. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Unpolarized light in vacuum is incident onto a...Ch. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - 14. A ray of light strikes the midpoint of one...Ch. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Around 1965, engineers at the Toro Company...Ch. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - A 4.00-m-long pole stands vertically in a...Ch. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - When light is incident normally on the interface...Ch. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - The light beam in Figure P25.53 strikes surface 2...Ch. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 59PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 62P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardA laser beam travels from air (n=1) into glass (n=1.5) and then into gelatin. The incident ray makes a 58.0o angle with the normal in the air before it enters the glass and a 36.4o angle with the normal after it enters the gelatin. In a neat and organized fashion, write out a solution which includes the following: A sketch of the physical situation with all given physical quantities clearly labeled. Draw a ray diagram showing all reflected and refracted rays in this situation and all angles clearly labeled. Determine (a) the angle the refracted ray makes with the normal in the glass and (b) the index of refraction of the gelatin. Clearly show all steps, starting from generalized equations. Explain your mathematical work in words. Your explanation should cover both what you did and the thought process behind why you did that. Evaluate your answer to determine whether it is reasonable or not. Consider all aspects of your answer (the numerical value, sign, and units) in your evaluation.…arrow_forwardA laser beam travels from air (n=1) into glass (n=1.5) and then into gelatin. The incident ray makes a 58.0o angle with the normal in the air before it enters the glass and a 36.4o angle with the normal after it enters the gelatin. In a neat and organized fashion, write out a solution which includes the following: A sketch of the physical situation with all given physical quantities clearly labeled. Draw a ray diagram showing all reflected and refracted rays in this situation and all angles clearly labeled. Determine (a) the angle the refracted ray makes with the normal in the glass and (b) the index of refraction of the gelatin. Clearly show all steps, starting from generalized equations. Explain your mathematical work in words. Your explanation should cover both what you did and the thought process behind why you did that. Evaluate your answer to determine whether it is reasonable or not. Consider all aspects of your answer (the numerical value, sign, and units) in your evaluation.…arrow_forward
- A laser beam with vacuum wavelength 632.8 nm is incident from air onto a block of Lucite as shown in the figure below. The line of sight of the photograph is perpendicular to the plane in which the light moves. (Assume that the incidence angle is 59°, and the refraction angle is 21º.) (a) Find the speed of the light in the Lucite. m/s (b) Find the frequency of the light in the Lucite. Hz (c) Find the wavelength of the light in the Lucite. nm Additional Materials еВook Courtesy of Henry Leap and Jim Lehmanarrow_forwardIn the figure, a 2.3-m-long vertical pole extends from the bottom of a swimming pool to a point 50.0 cm above the water. Sunlight is incident at angle θ = 45.0°. What is the length in meters of the shadow of the pole on the level bottom of the pool? The water has an index of refraction of 1.33.arrow_forwardThe diagram below shows light incident at an angle of 30° at a transparent rectangular slab made of medium B with refractive index ng = 2.0. Medium B is surrounded on all sides by medium A with refractive index na = 1.0. The thickness of the transparent slab is 60 cm. (a) Draw a neatly labeled diagram to show the path light takes as it passes through the slab and emerges on the other side. (b) How long does it take for light to cross the slab and emerge on the other side? Please express your final answer in units of nanoseconds using only two significant figures. (c) If the refractive index of medium A were increased to 1.5 and the experiment repeated, would the time taken by the wave to cross the slab increase, decrease or remain the same? Please explain with- out doing a calculation. Incident ray medium B normal medium A 60 стarrow_forward
- A 1.00-cm-thick by 4.00-cm-long glass plate is made up of two fused prisms. The top prism has an index of refraction of 1.486 and the bottom has an index of refraction of 1.878. A light ray is incident on the top face as shown in the figure to the right. The reflected ray A is completely linearly polarized. Determine the exit angle of this ray that pass through the prisms.arrow_forwardA ray of light originates inside the glass filled with water, as shown in the figure. It travels through water, in incident on the glass side, and emerges into the air. Ignore any partial reflections. What is the values of angles Q? Water n=1.33 370 Air Glass n = 1.0 n= 1.5 32.25° 67.16° 53.17° 35.89°arrow_forwardPlease Asaparrow_forward
- The drawing shows three layers of liquids, A, B, and C, each with a different index of refraction. Light begins in liquid A, passes into B, and eventually into C, as the ray of light in the drawing shows. The dashed lines denote the normals to the interfaces between the layers. Which liquid has the smallest index of refraction? Liquid A Liquid B Liquid C O liquid A O liquid B liquid Carrow_forwardplease helparrow_forwardA green laser beam travels through the an L-shaped block of transparent blue plastic with an angle 00 = 38. above the x axis. The index of refraction of the blue plastic is nb = 1.90. The beam passes into a rectangular block of transparent yellow plastic, and the refracted ray then has an angle of Oy = 43., as shown in the figure below. %3D a. What is the speed of the laser beam as it travels through the blue plastic? b. What is the index of refraction ny of the yellow plastic? c. When the refracted laser beam reaches the other edge of the yellow plastic, it is refracted again as it re-enters the blue plastic. What is the final direction Of of the beam above the x axis?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY