Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 25, Problem 45P
To determine

The largest and the smallest magnifications that can be obtained using the given lenses as objective and eyepiece.

Expert Solution & Answer
Check Mark

Answer to Problem 45P

Solution:

The largest magnification that can be obtained is 620 x and the smallest magnification obtained is 25 x.

Explanation of Solution

Microscopes are devices used to magnify tiny objects. The construction of the microscope is similar to that of the telescope. The objective produces a real and inverted image of the object, which falls between the focus and the optic centre of the eyepiece. The eyepiece produces an enlarged virtual image of the image formed by the objective. The final image formed is inverted and enlarged.

The magnification of the microscope is the product of the magnifications of the objective and the eyepiece.

Using the thin lens formula, a relation between the object distance do and the focal length of the objective fo is determined.

1fo=1do+1di

The magnification mo of the objective is given by,

mo=dido

Using the given values of the focal length, the maximum and the minimum values of mo are determined and these values when multiplied by the maximum and the minimum values of the magnification of the eye piece give the values of the maximum and the minimum possible values of magnification of the microscope.

M=mo×me

Given:

The values of the objective focal lengths fo=32 mm, 15 mm and 3.9 mm

The values of the magnifications of the eyepiece me=5×,15×

The distance from the objective at which the image is formed by it di=fo+(160 mm)

Formula:

1fo=1do+1di

mo=dido

M=mo×me

Calculation:

Derive a relationship between the object distance and the focal length of the objective using the thin lens equation, by substituting di=fo+(160 mm) in the thin lens equation.

1do=1fo1di=1fo1fo+(160 mm)do=f[fo+(160 mm)]160 mm

Derive an expression for the magnification of the objective, using the expression,

mo=dido=(fo+(160 mm))fo[fo+(160 mm)]/(160 mm)=(160 mm)fo

The objective has maximum magnification if the chosen focal length is the least. Of the given values, the smallest focal length is 3.9 mm.

(mo)max=(160 mm)fo=(160 mm)3.9 mm=41.03

The maximum magnification of the eyepiece is obtained using the lens with magnification 15×

The maximum total magnification that can be obtained is given by,

Mmax=(mo)max×(me)max=(41.03)(15)=615=620×  (2 sf)

The minimum magnification of the objective is obtained by using the value of maximum focal length.

(mo)min=(160 mm)fo=(160 mm)32 mm=5

The minimum magnification of the eyepiece is obtained using the lens with magnification 5×

The minimum total magnification that can be obtained is given by,

Mmin=(mo)min×(me)min=(5)(5)=25×

Chapter 25 Solutions

Physics: Principles with Applications

Ch. 25 - Prob. 11QCh. 25 - Explain why chromatic aberration occurs for thin...Ch. 25 - Prob. 13QCh. 25 - Prob. 14QCh. 25 - Prob. 15QCh. 25 - Prob. 16QCh. 25 - Prob. 17QCh. 25 - Prob. 18QCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - If a 135-mm telephoto lens is designed to cover...Ch. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - A person struggles to read by holding a book at...Ch. 25 - Prob. 11PCh. 25 - An eye is corrected by a - 5.50-D lens, 2.0 cm...Ch. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - A person has a far point of 14 cm. What power...Ch. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - A magnifying glass with a focal length of 9.2 cm...Ch. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - A 7.0x binocular has 3.5-cm-focal-length...Ch. 25 - Prob. 31PCh. 25 - 35. (II) An astronomical telescope has its two...Ch. 25 - 36. (II) A Galilean telescope adjusted for a...Ch. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - A microscope has a 14.0x eyepiece and a 60.0x...Ch. 25 - Repeat Problem 46 assuming that the final image is...Ch. 25 - Prob. 45PCh. 25 - An achromatic lens is made of two very thin...Ch. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Two stars 18 light-years away are barely resolved...Ch. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58GPCh. 25 - Prob. 59GPCh. 25 - Prob. 60GPCh. 25 - Prob. 61GPCh. 25 - Prob. 62GPCh. 25 - Prob. 63GPCh. 25 - Prob. 64GPCh. 25 - Prob. 65GPCh. 25 - Prob. 66GPCh. 25 - Prob. 67GPCh. 25 - Prob. 68GPCh. 25 - Prob. 69GPCh. 25 - Prob. 70GPCh. 25 - Prob. 71GPCh. 25 - Prob. 72GPCh. 25 - Prob. 73GPCh. 25 - Prob. 74GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY