Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 29P
(III) A 10.0-m length of wire consists of 5.0 m of copper followed by 5.0 m of aluminum, both of diameter 1.4 mm. A voltage difference of 85 mV is placed across the composite wire. (a) What is the total resistance (sum) of the two wires? (b) What is the current through the wire? (c) What are the voltages across the aluminum part and across the copper part?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Te-Learning Portal
Courses -
Reports
e-Services ▼
Academic Departments -
ETC -
CIMS
Salim
During an experiment to verify Ohm's law, the voltage supplied and the current through a circuit are measured.
[Voltage is measured in Volt (V) and current in Ampere (A)].
ww
R
on
Battery
The measured value of the current is I = 3.1 ± 0.2 A and that of the voltage is V = 14 0.5 V. The resistance of
the circuit (in N) can be calculated using the formula, R = V/I,
Calculate the,
a) Resistance (in 2) =
b) Fractional uncertainty in the resistance =
c) Absolute uncertainty (in 2) in the resistance=
The circuit shown below can be used to measure the resistance of a platinum resistance thermometer (PRT). AB is a uniform resistance wire of length 1.00 m and C is a sliding contact on this wire. A standard resistor R is included in the circuit. The position of C is adjusted until the voltmeter V reads zero.
(ii) The PRT consists of 9.00 m of wire of diameter 8.4 × 10-2 mm. The voltmeter reads 0 V when l1 = 0.422 m. If the standard resistor, R, has a resistance of 220 Ω, what is the resistivity of platinum? Show that you have checked that the value for the resistivity and its unit are sensible.
(a) Find the voltage drop (in V) in an extension cord having a 0.0650 Ω resistance and through which 5.45 A is flowing. V
(b) A cheaper cord utilizes thinner wire and has a resistance of 0.340 Ω. What is the voltage drop (in V) in it when 5.45 A flows?V
(c)Why is the voltage to whatever appliance is being used reduced by this amount? What is the effect on the appliance?
Chapter 25 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 25.2 - If 1 million electrons per second pass a point in...Ch. 25.3 - Prob. 1BECh. 25.4 - Return to the Chapter-Opening Question, page 651,...Ch. 25.4 - Prob. 1DECh. 25.4 - Prob. 1EECh. 25.4 - Prob. 1FECh. 25.6 - How many 60-W 120-V lightbulbs can operate on a...Ch. 25.7 - Each channel of a stereo receiver is capable of an...Ch. 25 - What quantity is measured by a battery rating...Ch. 25 - When an electric cell is connected to a circuit,...
Ch. 25 - When a flashlight is operated, what is being used...Ch. 25 - One terminal of a car battery is said to be...Ch. 25 - When you turn on a water faucet, the water usually...Ch. 25 - Can a copper wire and an aluminum wire of the same...Ch. 25 - The equation P = V2/R indicates that the power...Ch. 25 - What happens when a lightbulb burns out?Ch. 25 - If the resistance of a small immersion heater (to...Ch. 25 - Prob. 10QCh. 25 - Explain why lightbulbs almost always burn out just...Ch. 25 - Which draws more current, a 100-W lightbulb or a...Ch. 25 - Electric power is transferred over large distances...Ch. 25 - A 15-A fuse blows repeatedly. Why is it dangerous...Ch. 25 - When electric lights are operated on low-frequency...Ch. 25 - Driven by ac power, the same electrons pass back...Ch. 25 - The heating element in a toaster is made of...Ch. 25 - Is current used up in a resistor? Explain.Ch. 25 - Compare the drift velocities and electric currents...Ch. 25 - A voltage V is connected across a wire of length l...Ch. 25 - Why is it more dangerous to turn on an electric...Ch. 25 - ( A current of 1.30 A flows in a wire. How many...Ch. 25 - (I) A service station charges a battery using a...Ch. 25 - (I) What is the current in amperes if 1200 Na+...Ch. 25 - (I) What is the resistance of a toaster if 120V...Ch. 25 - (II) An electric clothes dryer has a heating...Ch. 25 - (II) A hair dryer draws 9.5 A when plugged into a...Ch. 25 - (II) A 4.5-V battery is connected to a bulb whose...Ch. 25 - (II) A bird stands on a dc electric transmission...Ch. 25 - (II) A 12-V battery causes a current of 0.60 A...Ch. 25 - (II) An electric device draws 6.50 A at 240 V. (a)...Ch. 25 - (I) What is the diameter of a 1.00-m length of...Ch. 25 - (I) What is the resistance of a 4.5-m length of...Ch. 25 - (II) Calculate the ratio of the resistance of 10.0...Ch. 25 - (II) Can a 2.2-mm-diameter copper wire have the...Ch. 25 - (II) A sequence of potential differences V is...Ch. 25 - (II) How much would you have 10 raise the...Ch. 25 - (II) A certain copper wire has a resistance of...Ch. 25 - (II) Determine at what temperature aluminum will...Ch. 25 - (II) A 100-W lightbulb has a resistance of about...Ch. 25 - (II) Compute the voltage drop along a 26-m length...Ch. 25 - (II) Two aluminum wires have the same resistance....Ch. 25 - (II) A rectangular solid made of carbon has sides...Ch. 25 - (II) A length of aluminum wire is connected to a...Ch. 25 - (II) Small changes in the length of an object can...Ch. 25 - (II) A length of wire is cut in half and the two...Ch. 25 - (III) For some applications, it is important that...Ch. 25 - (III) Determine a formula for the total resistance...Ch. 25 - (III) The filament of a lightbulb has a resistance...Ch. 25 - (III) A 10.0-m length of wire consists of 5.0 m of...Ch. 25 - (III) A hollow cylindrical resistor with inner...Ch. 25 - (I) What is the maximum power consumption of a...Ch. 25 - (I) The heating element of an electric oven is...Ch. 25 - (I) What is the maximum voltage that can be...Ch. 25 - (I) (a) Determine the resistance of, and current...Ch. 25 - (II) An electric power plant can produce...Ch. 25 - (II) A 120-V hair dryer has two settings: 850 W...Ch. 25 - (II) A 115-V fish-tank heater is rated at 95W....Ch. 25 - (II) You buy a 75-W lightbulb in Europe, where...Ch. 25 - (II) How many kWh of energy does a 550-W toaster...Ch. 25 - (II) At 0.095/kWh, what does it cost to leave a...Ch. 25 - (II) What is the total amount of energy stored in...Ch. 25 - (II) An ordinary flashlight uses two D-cell 1.5-V...Ch. 25 - (II) How many 75-W lightbulbs, connected to 120V...Ch. 25 - (II) An extension cord made of two wires of...Ch. 25 - (II) A power station delivers 750kW of power at...Ch. 25 - (III) A small immersion heater can be used in a...Ch. 25 - (III) The current in an electromagnet connected to...Ch. 25 - (III) A 1.0-m-long round tungsten wire is to reach...Ch. 25 - (I) Calculate the peak current in a 2.7-k resistor...Ch. 25 - (I) An ac voltage, whose peak value is 180 V, is...Ch. 25 - (II) Estimate the resistance of the 120-Vrms...Ch. 25 - (II) The peak value of an alternating current in a...Ch. 25 - (II) An 1800-W are welder is connected to a...Ch. 25 - (II) (a) What is the maximum instantaneous power...Ch. 25 - (II) A heater coil connected to a 240-Vrrms ac...Ch. 25 - (II) For a time-dependent voltage V(t), which is...Ch. 25 - Prob. 57PCh. 25 - (II) A 5.80-m length of 2.0-mm-diameter wire...Ch. 25 - (II) At a point high in the Earths atmosphere....Ch. 25 - (I) What is the magnitude of the electric field...Ch. 25 - (II) A neuron is stimulated with an electric...Ch. 25 - (III) During an action potential, Na+ ions move...Ch. 25 - A person accidentally leaves a car with the lights...Ch. 25 - How many coulombs are there in 1.00 ampere-hour?Ch. 25 - You want to design a portable electric blanket...Ch. 25 - What is the average current drawn by a 1.0-hp...Ch. 25 - Prob. 67GPCh. 25 - The heating element of a 110-V, 1500-W heater is...Ch. 25 - (a) A particular household uses a 1.8-kW healer...Ch. 25 - A small city requires about 15 MW of power....Ch. 25 - A 1400-W hair dryer is designed for 117 V. (a)...Ch. 25 - The wiring in a house must be thick enough so it...Ch. 25 - Prob. 73GPCh. 25 - Suppose a current is given by the equation I =...Ch. 25 - A microwave oven running at 65% efficiency...Ch. 25 - Prob. 76GPCh. 25 - 220 V is applied to two different conductors made...Ch. 25 - An electric heater is used to heat a room of...Ch. 25 - A 2800-W oven is connected to a 240-V source, (a)...Ch. 25 - A proposed electric vehicle makes use of storage...Ch. 25 - A 12.5- resistor is made from a coil of copper...Ch. 25 - A fish-tank heater is rated at 95 W when connected...Ch. 25 - A 100-W, 120-V lightbulb has a resistance of 12 ...Ch. 25 - In an automobile, the system voltage varies from...Ch. 25 - The Tevatron accelerator at Fermilab (Illinois) is...Ch. 25 - Lightbulb A is rated at 120 V and 40 W for...Ch. 25 - An air conditioner draws 14 A at 220-V ac. The...Ch. 25 - Copper wire of diameter 0.259 cm is used to...Ch. 25 - Battery-powered electricity is very expensive...Ch. 25 - How far does an average electron move along the...Ch. 25 - A copper pipe has an inside diameter of 3.00 cm...Ch. 25 - For the wire in Fig. 2539, whose diameter varies...Ch. 25 - The cross section of a portion of wire increases...Ch. 25 - Prob. 94GPCh. 25 - The level of liquid helium (temperature 4 K) in...Ch. 25 - (II) The resistance, R, of a particular thermistor...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What type of culture medium would increase the size of a bacterial capsule?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Explain why 92% of 2,4-pemtanedione exists as the enol tautomer in hexane but only 15% of this compound exists ...
Organic Chemistry (8th Edition)
WHAT IF What would the discovery of a bacterial species that is a methanogen imply about the evolution of the ...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Power P0 = I0 V0 is delivered to a resistor of resistance R0. If the resistance is doubled (Rnew = 2R0) while the voltage is adjusted such that the current is constant, what are the ratios (a) Pnew/P0 and (b) Vnew/V0? If, instead, the resistance is held constant while Pnew = 2P0, what are the ratios (c) Vnew/V0, and (d) Inew/I0?arrow_forwardWhen a straight wire is heated, its resistance changes according to the equation R = R0 [1 + (T T0)] (Eq. 17.7), where is the temperature coefficient of resistivity. (a) Show that a more precise result, which includes the length and area of a wire change when it is heated, is R=R0[1+(TT0)][1+(TT0)][1+2(TT0)] where is the coefficient of linear expansion. (See Topic 10.) (b) Compare the two results for a 2.00-m-long copper wire of radius 0.100 mm, starting at 20.0C and heated to 100.0C.arrow_forwardExplain why R=R0(1 + a?T) for the temperature variation of the resistance R of an object is not as accurate as P=P0(1 + a?T) which gives the temperature variation of resistivity P.arrow_forward
- The severity of a shock depends on die magnitude of the current through your body. Would you prefer to be in series or in parallel with a resistance, such as the heating element of a toaster, if you were shocked by it? Explain.arrow_forwardResistors are commonly rated at 18W,14W,12W ,1 W and 2 W for use in electrical circuits. If a current of1 = 2.00 A is accidentally passed through a R=1.00 resistor rated at 1 W, what would be the most probable outcome? Is there anything that can be done to prevent such an accident?arrow_forwardA child's electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0.0200 inseries with a 1.53-V carbon-zinc dry cell having a 0.100- internal resistance. The load resistance is 10.0 . (a) Draw a circuit diagram of the toy and itsbatteries, (b) What current flows? (c) How much power is supplied to the load? (d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?arrow_forward
- (b) 1. A platinum resistance sensor has a resistance of 100 2 at 0 °C and a temperature coefficient of resistance (oc) of 4 x 10 "C. If the resistance of the sensor is 125 O, find the corresponding temperature of the sensor. ii. A variable dielectric capacitive displacement sensor consists of two square metal plates of side 5 cm, separated by a gap of 1 mm. A sheet of dielectric material 1 mm thick and of the same area as the plates can be slide between them as shown in Figure Q.4b. Given that the dielectric constant of air is 1 and that of the dielectric material is 4, calculate the capacitance of the sensor when the input displacement x-0.0 cm, 2.5 cm and 5,0 cm. Figure Q4barrow_forward(b) 50 2 shown in the Figure Q11(b). Find the equivalent resistance across AB. (i) (ii) Find the voltage VAB across AB. 15v Vs Rs R2 A B R1 R3 R1 = 20 92, R2 = 30 2 and R3 = + VABarrow_forward(a) Suppose two resistors are connected in parallel with resistances Rị and R2 measured in Ohms (N). The total resistance R is given by 1 1 1 R R1 R2 Suppose R1 is increasing at a rate of 1/4 2/s and R2 is increasing at a rate of 1/16 N/s. At what rate is R changing when R1 = 1/2 N and R2 = 1/4 N. (b) Car A is traveling North at a rate of 60 mi/hr, car B is traveling West at a rate of 45 mi/hr. The cars are on straight roads approaching an intersection point. At what rate is the distance between the cars changing when Car A is 3 miles from the intersection and Car B is 4 miles from the intersection.arrow_forward
- A circuit made up of 6 resistors is shown in the figure, with resistances R1 = 16 Ω, R2 = 25 Ω, R3 = 41 Ω, R4 = 74 Ω, R5 = 77 Ω, and R6 = 73 Ω. The total current going through the circuit is I = 4.5 A. -->Calculate the value of ΔV, in volts.arrow_forward(a) Find the voltage drop in an extension cord having a 0.06 2 resistance and through which 4.5 A is flowing. V= V (b) A cheaper cord utilizes thinner wire and has a resistance of 0.35 2. What is the voltage drop in it when 4.5 A flows? V= V (c) Why is the voltage to whatever appliance is being used reduced by this amount? What is the effect on the appliance? The voltage supplied to whatever appliance is being used is reduced because the total voltage drop from the wall to the final output of the appliance is So, if the voltage drop across the extension cord is large, the voltage drop across the appliance is significantly so the power output by the appliance can be significantly reducing the ability of the appliance to work properly. Find the power dissipated in each of these extension cords: (d) an extension cord having a 0.06 resistance and through which 4.5 A is flowing; P= ✔W (e) a cheaper cord utilizing thinner wire and with a resistance of 0.35 2.; P= W (f) Which extension cord…arrow_forwardI 96. Consider the circuit below. The capacitor has a capacitance of 10 mF. The switch is closed and after a long time the capacitor is fully charged. (a) What is the current through each resistor a long time after the switch is closed? (b) What is the voltage across each resistor a long time after the switch is closed? (c) What is the voltage across the capacitor a long time after the switch is closed? (d) What is the charge on the capacitor a long time after the switch is closed? (e) The switch is then opened. The capacitor discharges through the resistors. How long from the time before the current drops to one fifth of the initial value? V = 12 V R₁ = 20 R₁₂ = 30 R₂ = 42 C R₁₁ = 30arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY