Concept explainers
(a)
The far point of the man without glasses.
(a)
Answer to Problem 75E
The far point of the man without glasses is
Explanation of Solution
Write the expression for the power of eye at near point.
Here,
Write the expression for the power of the eye at far point.
Here,
Write the expression for the power of the eye at far point.
Here,
Conclusion:
Substitute
Substitute
Substitute
Simplify the above expression.
Simplify the above expression for the far point.
Thus, the far point of the man without glasses is
(b)
The far point of the man with the correct glasses.
(b)
Answer to Problem 75E
The far point of the man with the correct glasses is
Explanation of Solution
Write the expression for the power of eye at near point with the glasses.
Here,
Write the expression for the power of lens in the glasses.
Write the expression for the far point.
Conclusion:
Substitute
Substitute
Substitute
Simplify the above expression.
Simplify the above expression for the far point as:
Thus, the far point of the man with the correct glasses is
Want to see more full solutions like this?
Chapter 24 Solutions
General Physics, 2nd Edition
- The accommodation limits for a nearsighted persons eyes are 18.0 cm and 80.0 cm. When he wears his glasses, he can see faraway objects clearly. At what minimum distance is he able to see objects clearly?arrow_forwardFor normal distant vision, the eye has a power of 50.0 D. What was the previous far point of a patient who had laser vision correction that reduced the power of her eye by 7.00 D, producing normal distant vision?arrow_forwardIn Figures CQ36.11a and CQ36.11b, which glasses correct nearsightedness and which correct farsightedness?arrow_forward
- It has become common to replace the cataract-clouded lens of the eye with an internal lens. This intraocular lens can be chosen so that the person has perfect distant vision. Will the person be able to read without glasses? If the person was nearsighted, is the power of the intraocular lens greater or less than the removed lens?arrow_forwardThe contact lens prescription for a mildly farsighted person is 0.750 D, and the person has a near point of 29.0 cm. What is the power of the tear layer between the cornea and the lens if the correction is ideal, taking the tear layer into account?arrow_forwardShow that the magnification of a thin lens is given by M = di/do (Eq. 38.6). Hint: Follow the derivation of the lens makers equation (page 1233) and start with a thick lens.arrow_forward
- Two thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forwardTwo stars that are 109km apart are viewed by a telescope and found to be separated by an angle of 105 radians. If the eyepiece of the telescope has a focal length of 1.5 cm and the objective has a focal length of 3 meters, how far away are the stars from the observer?arrow_forwardA nearsighted man cannot see objects clearly beyond 20 cm from his eyes. How close must he stand to a mirror in order to see what he is doing when he shaves?arrow_forward
- A particular patients eyes are unable to focus on objects closer than 35.0 cm and corrective lenses are to be prescribed so that the patient can focus on objects 20.0 cm from their eyes. (a) Is the patient nearsighted or farsighted? (b) If contact lenses are to lie prescribed, determine the required lens power. (c) If eyeglasses are to be prescribed instead and the distance between the eyes and the lenses is 2.00 cm, determine the power of the required corrective lenses. (d) Are the required lenses converging or diverging?arrow_forwardIf the lens of a person’s eye is removed because of cataracts (as has been done since ancient times), why would you expect an eyeglass lens of about 16 D to be prescribed?arrow_forwardA point source of light is 50 cm in front of a converging lens of focal length 30 cm. A concave mirror with a focal length of 20 cm is placed 25 cm behind the lens. Where does the final image form, and what are its orientation and magnification?arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning