General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 24, Problem 28E
To determine
The magnification of the microscope.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
General Physics, 2nd Edition
Ch. 24 - Prob. 1RQCh. 24 - Prob. 2RQCh. 24 - Prob. 3RQCh. 24 - Prob. 4RQCh. 24 - Prob. 5RQCh. 24 - Prob. 6RQCh. 24 - Prob. 7RQCh. 24 - Prob. 8RQCh. 24 - Prob. 9RQCh. 24 - Prob. 10RQ
Ch. 24 - Prob. 11RQCh. 24 - Prob. 12RQCh. 24 - Prob. 13RQCh. 24 - Prob. 1ECh. 24 - Prob. 2ECh. 24 - Prob. 3ECh. 24 - Prob. 4ECh. 24 - Prob. 5ECh. 24 - Prob. 6ECh. 24 - Prob. 7ECh. 24 - Prob. 8ECh. 24 - Prob. 9ECh. 24 - Prob. 10ECh. 24 - Prob. 11ECh. 24 - Prob. 12ECh. 24 - Prob. 13ECh. 24 - Prob. 14ECh. 24 - Prob. 15ECh. 24 - Prob. 16ECh. 24 - Prob. 17ECh. 24 - Prob. 18ECh. 24 - Prob. 19ECh. 24 - Prob. 20ECh. 24 - Prob. 21ECh. 24 - Prob. 22ECh. 24 - Prob. 23ECh. 24 - Prob. 24ECh. 24 - Prob. 25ECh. 24 - Prob. 26ECh. 24 - Prob. 27ECh. 24 - Prob. 28ECh. 24 - Prob. 29ECh. 24 - Prob. 30ECh. 24 - Prob. 31ECh. 24 - Prob. 32ECh. 24 - Prob. 33ECh. 24 - Prob. 37ECh. 24 - Prob. 38ECh. 24 - Prob. 39ECh. 24 - Prob. 43ECh. 24 - Prob. 44ECh. 24 - Prob. 46ECh. 24 - Prob. 47ECh. 24 - Prob. 48ECh. 24 - Prob. 51ECh. 24 - Prob. 52ECh. 24 - Prob. 53ECh. 24 - Prob. 54ECh. 24 - Prob. 57ECh. 24 - Prob. 58ECh. 24 - Prob. 59ECh. 24 - Prob. 60ECh. 24 - Prob. 61ECh. 24 - Prob. 62ECh. 24 - Prob. 63ECh. 24 - Prob. 64ECh. 24 - Prob. 65ECh. 24 - Prob. 66ECh. 24 - Prob. 67ECh. 24 - Prob. 68ECh. 24 - Prob. 69ECh. 24 - Prob. 70ECh. 24 - Prob. 71ECh. 24 - Prob. 72ECh. 24 - Prob. 73ECh. 24 - Prob. 74ECh. 24 - Prob. 75ECh. 24 - Prob. 76ECh. 24 - Prob. 77ECh. 24 - Prob. 78ECh. 24 - Prob. 79E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the object is 12 cm from the eye?arrow_forwardIn Figure P26.38, a thin converging lens of focal length 14.0 cm forms an image of the square abcd, which is hc = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c, and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P26.38arrow_forwardTwo stars that are 109km apart are viewed by a telescope and found to be separated by an angle of 105 radians. If the eyepiece of the telescope has a focal length of 1.5 cm and the objective has a focal length of 3 meters, how far away are the stars from the observer?arrow_forward
- A converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forwardAu object of height 3.0 cm is placed at 25 cm in front of a diverging lens of focal length 20 cm. Behind the diverging lens, there is a converging lens of focal length 20 cm. The distance between the lenses is 5.0 cm. Fluid the location and size of the final image.arrow_forwardA group of students is given two converging lenses. Lens A has a focal length of 12.5 cm, and lens B has a focal length of 50.0 cm. The diameter of each lens is 6.50 cm. The students are asked to construct a microscope from these lenses that has the same magnification as the telescope in Problem 80 if possible, and they have this discussion: Avi: These are the same lenses we used to make a telescope. So they wont work as a microscope. Microscopes are for looking at close objects; telescopes are for looking at far objects. Cameron: All you need for a microscope are two converging lenses. I think the difference from a telescope is just that the order of the lenses is switched. A microscope is just a backward telescope. Shannon: I think the order of the lenses doesnt matter because the magnification is inversely proportional to both focal lengths. I think we have to adjust the distance between the lenses. a. What do you think? b. If a microscope can be constructed with these two lenses, describe its design. What is the minimum separation of the lenses? Where must you place the object?arrow_forward
- The accommodation limits for a nearsighted persons eyes are 18.0 cm and 80.0 cm. When he wears his glasses, he can see faraway objects clearly. At what minimum distance is he able to see objects clearly?arrow_forwardAn object viewed with the naked eye subtends a 2° angle. If you view the object through a 10 x magnifying glass, what angle is subtended by the image formed on your retina?arrow_forwardTwo thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forward
- An object of height 3 cm is placed at a distance of 25 cm in front of a converging lens of focal length 20 cm, to be referred to as the first lens. Behind the lens there is another converging lens of focal length 20 cm placed 10 cm from the first lens. There is a concave mirror of focal length 15 cm placed 50 cm from the second lens. Find the location, orientation, and size of the final image.arrow_forwardLet objective and eyepiece of a compound microscope have focal lengths of 2.5 cm and 10 cm, respectively and be separated by 12 cm. A 70- mobject is placed 6.0 cm from the objective. How large is the virtual image formed by the objective-eyepiece system?arrow_forwardFigure P26.39 diagrams a cross-section of a camera. It has a single lens of focal length 65.0 mm, which is to form an image on the CCD (charge-coupled device) at the back of the camera. Suppose the position of the lens has been adjusted to focus the image of a distant object. How far and in what direction must the lens be moved to form a sharp image of an object that is 2.00 m away? Figure P26.39arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY