Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.4, Problem 2.3QQ
Make a velocity–time graph for the car in Figure 2.1a. Suppose the speed limit for the road on which the car is driving is 30 km/h. True or False? The car exceeds the speed limit at some time within the time interval 0–50 s.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Imagine you are in charge of figuring out the maximum speed of a very foggy road. Consider a road that
we cannot see anything beyond 15 meters. Suppose that human reaction time is 0.3s and the
deceleration from pressing the brake is -10m/s².
What should be the speed limit for this road in [m/s]?
Hint: during the reaction time, the car still moves with constant speed. The car starts slowing down
when the brake is pressed.
2.37. A car accelerates from rest on a straight road. A short time later, the car
decelerates to a stop and then returns to its original position in a similar manner, by
speeding up and then slowing to a stop. Which of the following five coordinate versus
time graphs best describes the motion? ch02/image5.jpeg
W K n
さ
||
in
А
IV
=
An Olympic class sprinter starts a race from rest with an acceleration of 4.9 m/s2. Take her direction of motion as the positive direction.
Part A: What is her velocity 2.6 s later in meters per second?
Part B: Select the graph that most closely represents her position vs. time this period
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- please help with number one and also convert 140km/hr to m/s because my teacher wants thatarrow_forwardA honda civic is driven at 20 m/s for 12 mins, then 40 m/s for 20 min, and finally at 50 m/s for 8 min. a.) calculate the average speed over the interval. b.) How fast must the honda civic move in the last 8 mins of travel to obtain an average spee of 55 m/s?arrow_forwardA woman backs her van out of her parking space with a constant acceleration of 1.8 m/s2. Assume that her initial motion is in the positive direction. Part A: How long does it take her to reach a speed of 2.1 m/s in seconds? Part B: If she then brakes to a stop in 0.65 s, what is her acceleration in meters per square second?arrow_forward
- A car is moving at a velocity of 20 m/s. The car then accelerates uniformly at 1.8 m/s2. The car continues at the same acceleration until it reaches a velocity of 25 m/s, which is the legal speed limit. What is the distance the car travels in while accelerating?arrow_forwardFor a gr11 physics class please use attached formula sheetarrow_forwardAn automobile is driven at 30 mph for 12 min, then at 40 mph for 20 min, and finally 50 mph for8min. What is the average speed over this interval? How fast must the automobile move in the last 8 min to obtain an average speed of 35 mph?arrow_forward
- A car accelerates uniformly from zero to 12 m/sec^2 in 8 seconds starting from rest. During the next 4 seconds, the car decelerates uniformly at a constant rate of 11 m/sec^2 a. Which of the following gives the velocity of the car after 12 seconds? b. Which of the following gives the distance traveled after 10 seconds? c. Which of the following gives the total distance traveled after 12 seconds?arrow_forwardA stone is thrown vertically upward from the top of a building. If the equation of the motion of the stone is s=-5t^2+30t+200, where s is the directed distance from the ground in meters and t is in seconds. a. What is the height of the building? b. What is the average velocity in the time interval [1,3]c. What is the instantaneous velocity at time t=1?d. At what time will be the stone hit the ground?arrow_forwardIn class, we used a numerical method to determine the velocity of an object at 0s and = t = 2.00 s given that the object had started from rest at t accelerated at a rate given by a(t) = (8.00 m/s^)t². Here's what we did: 1. Divided t into four intervals of 0.5 s each. 2. For each interval, calculated the average a. These were the numerical values we obtained for each time interval: 1 0.25 0.50 i t (s) a; (m/s²) After summing the values according to: 2 0.75 4.50 3 1.25 12.50 lim ã‚At, 2 V₂v₁ = limast. t₁ At→0 we arrived at the approximate value v = 21.0 m/s. 4 1.75 24.50 a (m/s²) 32.00+ 24.00 16.00 8.00 0 ā₁ 0 ā2 az as 0.50 1.00 1.50 2.00 t (s) 21.33 m/s. We then proceeded to integrate to obtain the analytical solution, which was v = Using the same numerical method, divide t into eight and then sixteen intervals to calculate the approximate value for v at t = 2.00 s. This should demonstrate that with more sampling, the AUC (area under the curve) value converges toward the analytical…arrow_forward
- A hockey player moves in a straight line along the length of the ice in a game. We measure position from the center of the rink. Image shows a position-versus-time graph for his motion.a. Sketch an approximate velocity-versus-time graph.b. At which point or points is the player moving the fastest?c. Is the player ever at rest? If so, at which point or points?arrow_forwardThe motions of a car and a truck along a straight road are represented by the velocity-time graphs in Figure 2.3. The two vehicles are initially alongside each other at time t= 0. Figure 2.3 Trock Car T At time T, what is true of the distances travelled by the vehicles since time t = 0? O A. The car will have travelled further than the truck. O B. The truck will have travelled further than the car. OC. The truck will not have moved. O D. They will have travelled the same distance.arrow_forwardvel while reduc 4. A bus starts from rest at a station and accelerates at a rate of 2 mvs² for 15 s. It then runs at constant speed for 25 s and slows down decelerating at -3 m/s? until it stops at the next station. Find the total distance traveled by the bus.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY