Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 21P
(a)
To determine
The position of the particle.
(b)
To determine
The velocity of the particle.
(c)
To determine
The acceleration of the particle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle moves along the x axis according to the equation x=2.00 + 3.00t - 1.00t², where x is in meters and t is in seconds. At t=3.00s, find (a) the position of the particle, (b) its velocity, and (c) its acceleration.
A particle is moving in three dimensions and its position vector is given by;
r(t) = (4t² + 1.7t) î + (1.5t − 2.1)ĵ + (2.7t³ + 2t) k
where r is in meters and t is in seconds. Determine the magnitude of the instantaneous velocity at t = 3s. Express your answer in units of m/s using one decimal
place.
Answer:
A particle’s acceleration is (4.0iˆ+3.0jˆ)m/s2.(4.0i^+3.0j^)m/s2. At t = 0, its position and velocity are zero. (a) What are the particle’s position and velocity as functions of time? (b) Find the equation of the path of the particle. Draw the x- and y-axes and sketch the trajectory of the particle.
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The position of a particle is defined byr = {20 cos t i+ 8 sint j}m, where t is in seconds and the arguments for the sine and cosine are given in radians. Determine the magnitudes of the velocity and acceleration of the particle when t = 3 s.arrow_forwardA particle moves along the x-axis according to the equation x 2.00 + 3.00t - the acceleration of the particle. 1.00t2. where x is in meters and t is in seconds. At t=D3.00s, findarrow_forwardThe coordinates of a particle moving along a curve are x(t) = -2t2 +15 and y(t) = t2 -10t + 15 , m whent is in seconds. Calculate the magnitude of velocity and acceleration when t= 5 sec.arrow_forward
- A particle moves along two dimensions based on the following position vector r= [2.0 m + (3.00 m/s)f ]i + [(3.0 m)t - (2.00 m/s2)rlj a. Find the distance it covered in the first minute. b. Find the general expression of the instantaneous acceleration of the particle.arrow_forwardThe velocity of a particle (in meters per second) is given by v = 16t²i + 4t³j+ (5t + 2)k, where t is in seconds. If the particle is at the origin when t = 0, determine the magnitude of the particle's acceleration when t = 2 s. Also, what is the x, y, z coordinate position of the particle at this instant?arrow_forwardA particle moves along the x-axis according to the equation x = 2.00 +3.00t -1.00t^2, where x is in meters and t is in seconds. At t = 3.00s , find the acceleration of the particle.arrow_forward
- A computer model displays the motion of a particle on a coordinate system in real time. At time t = 0, the particle is at the origin of the coordinate system and has velocity components v₁ = 0 and "x Vy = 6.8 m/s. The particle has acceleration components of ax = -3.2 m/s² and = 0. ay (a) What are the x and y positions of the particle, in meters, at t = 4.0 s? X = y = Vx Vy m (b) What are velocity components of the particle, in m/s, at t = 4.0 s? m/s m/s = m (c) How does the speed of the particle change from t = 0 to t = 4.0 s? O The particle's speed remains constant. O The particle's speed decreases with time. O The particle's speed increases and then decreases with time. O The particle's speed increases with time.arrow_forwardA particle moving with an initial velocity v, = (10m/s)î and initial position 7, = (4m)î + (2m)j, undergoes an acceleration ở = 2t²î + 4ĵ in SI units. For t = 10 s; a) Calculate the velcoity v= vxI+ vy®. b) Calculate the position r= x+ y. c) What are the magnitudes of the velocity and the position vector of the particle? d) Find also the angle each vector is making with the x-axis at that time.arrow_forwardThe particle travels along the path defined by the parabola y = 0.5x^2. If the component of velocity along the x axis is vx = (5t) ft/s, where t is in seconds, determine the particle's magnitude of its acceleration when t = 1 s. When t = 0, x = 0, y = 0.arrow_forward
- Problem 2: The position of a particle is given by the following expression, where t is time measured in seconds: r(t) = [(3.65 m/s?)f²]į+ (-4.23 m)j + [(4.48 m/s³)r*]k. Part (a) What is the magnitude of the velocity of the particle, in m/s, at t = 0.00 s? Part (b) What is the magnitude of the velocity of the particle, in m/s, at t = 1.65 s? Part (c) What angle, in degrees, does the velocity of the particle make with the +z axis at t = 1.65 s? Part (d) What is the magnitude of the average velocity, in m/s, betweent = 0.00 s and t = 1.65 s? Part (e) What angle, in degrees, does the average velocity between t = 0.00 s and t = 1.65 s make with the z axis?arrow_forwardTaking north to be the positive y direction and east to be the positive x direction, particle’s position is given by r(t) = [(45.1 m/s)t]i + [(7.37 m)t2]j.At what time, in seconds, is the particle traveling directly northeast?arrow_forwardA particle initially is moving at a velocity with Cartesian components (5.0 m/s, 4.0 m/s) and 5.6 s later it is moving at a velocity with components (8.0 m/s, 0.0 m/s). What is the magnitude of its average acceleration, in m/s2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY