Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2.3, Problem 29P
Program Plan Intro
Program Description: Purpose of the problem is to obtain the maximum altitude that projectile achieved, if its initial velocity is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For an object of mass m=3 kg to slide without friction up the rise of height h=1 m shown, it must have a
minimum initial kinetic energy (in J) of:
h
O a. 40
O b. 20
O c. 30
O d. 10
Suppose that a parachutist with linear drag (m=50 kg, c=12.5kg/s) jumps from an airplane flying at an altitude of a kilometer with a horizontal velocity of 220 m/s relative to the ground.
a) Write a system of four differential equations for x,y,vx=dx/dt and vy=dy/dt.
b) If theinitial horizontal position is defined as x=0, use Euler’s methods with t=0.4 s to compute the jumper’s position over the first 40 s.
c) Develop plots of y versus t and y versus x. Use the plot to graphically estimate when and where the jumper would hit the ground if the chute failed to open.
An aluminum wire having a cross-sectional area equal to 4.60 x 10-6 m? carries a current of 7.50 A. The density of aluminum is 2.70 g/cm³.
Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire.
1.95E-4
The equation for the drift velocity includes the number of charge carriers per volume, which in this case is equal to the number of atoms per
volume. How do you calculate that if you know the density and the atomic weight of aluminum? mm/s
Chapter 2 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 2.1 - Prob. 1PCh. 2.1 - Prob. 2PCh. 2.1 - Prob. 3PCh. 2.1 - Prob. 4PCh. 2.1 - Prob. 5PCh. 2.1 - Prob. 6PCh. 2.1 - Prob. 7PCh. 2.1 - Prob. 8PCh. 2.1 - Prob. 9PCh. 2.1 - Prob. 10P
Ch. 2.1 - Prob. 11PCh. 2.1 - Prob. 12PCh. 2.1 - Prob. 13PCh. 2.1 - Prob. 14PCh. 2.1 - Prob. 15PCh. 2.1 - Prob. 16PCh. 2.1 - Prob. 17PCh. 2.1 - Prob. 18PCh. 2.1 - Prob. 19PCh. 2.1 - Prob. 20PCh. 2.1 - Prob. 21PCh. 2.1 - Suppose that at time t=0, half of a logistic...Ch. 2.1 - Prob. 23PCh. 2.1 - Prob. 24PCh. 2.1 - Prob. 25PCh. 2.1 - Prob. 26PCh. 2.1 - Prob. 27PCh. 2.1 - Prob. 28PCh. 2.1 - Prob. 29PCh. 2.1 - A tumor may be regarded as a population of...Ch. 2.1 - Prob. 31PCh. 2.1 - Prob. 32PCh. 2.1 - Prob. 33PCh. 2.1 - Prob. 34PCh. 2.1 - Prob. 35PCh. 2.1 - Prob. 36PCh. 2.1 - Prob. 37PCh. 2.1 - Fit the logistic equation to the actual U.S....Ch. 2.1 - Prob. 39PCh. 2.2 - Prob. 1PCh. 2.2 - Prob. 2PCh. 2.2 - Prob. 3PCh. 2.2 - Prob. 4PCh. 2.2 - Prob. 5PCh. 2.2 - Prob. 6PCh. 2.2 - Prob. 7PCh. 2.2 - Prob. 8PCh. 2.2 - Prob. 9PCh. 2.2 - Prob. 10PCh. 2.2 - Prob. 11PCh. 2.2 - Prob. 12PCh. 2.2 - Prob. 13PCh. 2.2 - Prob. 14PCh. 2.2 - Prob. 15PCh. 2.2 - Prob. 16PCh. 2.2 - Prob. 17PCh. 2.2 - Prob. 18PCh. 2.2 - Prob. 19PCh. 2.2 - Prob. 20PCh. 2.2 - Prob. 21PCh. 2.2 - Prob. 22PCh. 2.2 - Prob. 23PCh. 2.2 - Prob. 24PCh. 2.2 - Use the alternatives forms...Ch. 2.2 - Prob. 26PCh. 2.2 - Prob. 27PCh. 2.2 - Prob. 28PCh. 2.2 - Consider the two differentiable equation...Ch. 2.3 - The acceleration of a Maserati is proportional to...Ch. 2.3 - Prob. 2PCh. 2.3 - Prob. 3PCh. 2.3 - Prob. 4PCh. 2.3 - Prob. 5PCh. 2.3 - Prob. 6PCh. 2.3 - Prob. 7PCh. 2.3 - Prob. 8PCh. 2.3 - A motorboat weighs 32,000 lb and its motor...Ch. 2.3 - A woman bails out of an airplane at an altitude of...Ch. 2.3 - According to a newspaper account, a paratrooper...Ch. 2.3 - Prob. 12PCh. 2.3 - Prob. 13PCh. 2.3 - Prob. 14PCh. 2.3 - Prob. 15PCh. 2.3 - Prob. 16PCh. 2.3 - Prob. 17PCh. 2.3 - Prob. 18PCh. 2.3 - Prob. 19PCh. 2.3 - Prob. 20PCh. 2.3 - Prob. 21PCh. 2.3 - Suppose that =0.075 (in fps units, with g=32ft/s2...Ch. 2.3 - Prob. 23PCh. 2.3 - The mass of the sun is 329,320 times that of the...Ch. 2.3 - Prob. 25PCh. 2.3 - Suppose that you are stranded—your rocket engine...Ch. 2.3 - Prob. 27PCh. 2.3 - (a) Suppose that a body is dropped (0=0) from a...Ch. 2.3 - Prob. 29PCh. 2.3 - Prob. 30PCh. 2.4 - Prob. 1PCh. 2.4 - Prob. 2PCh. 2.4 - Prob. 3PCh. 2.4 - Prob. 4PCh. 2.4 - Prob. 5PCh. 2.4 - Prob. 6PCh. 2.4 - Prob. 7PCh. 2.4 - Prob. 8PCh. 2.4 - Prob. 9PCh. 2.4 - Prob. 10PCh. 2.4 - Prob. 11PCh. 2.4 - Prob. 12PCh. 2.4 - Prob. 13PCh. 2.4 - Prob. 14PCh. 2.4 - Prob. 15PCh. 2.4 - Prob. 16PCh. 2.4 - Prob. 17PCh. 2.4 - Prob. 18PCh. 2.4 - Prob. 19PCh. 2.4 - Prob. 20PCh. 2.4 - Prob. 21PCh. 2.4 - Prob. 22PCh. 2.4 - Prob. 23PCh. 2.4 - Prob. 24PCh. 2.4 - Prob. 25PCh. 2.4 - Prob. 26PCh. 2.4 - Prob. 27PCh. 2.4 - Prob. 28PCh. 2.4 - Prob. 29PCh. 2.4 - Prob. 30PCh. 2.4 - Prob. 31PCh. 2.5 - Prob. 1PCh. 2.5 - Prob. 2PCh. 2.5 - Prob. 3PCh. 2.5 - Prob. 4PCh. 2.5 - Prob. 5PCh. 2.5 - Prob. 6PCh. 2.5 - Prob. 7PCh. 2.5 - Prob. 8PCh. 2.5 - Prob. 9PCh. 2.5 - Prob. 10PCh. 2.5 - Prob. 11PCh. 2.5 - Prob. 12PCh. 2.5 - Prob. 13PCh. 2.5 - Prob. 14PCh. 2.5 - Prob. 15PCh. 2.5 - Prob. 16PCh. 2.5 - Prob. 17PCh. 2.5 - Prob. 18PCh. 2.5 - Prob. 19PCh. 2.5 - Prob. 20PCh. 2.5 - Prob. 21PCh. 2.5 - Prob. 22PCh. 2.5 - Prob. 23PCh. 2.5 - Prob. 24PCh. 2.5 - Prob. 25PCh. 2.5 - Prob. 26PCh. 2.5 - Prob. 27PCh. 2.5 - Prob. 28PCh. 2.5 - Prob. 29PCh. 2.5 - Prob. 30PCh. 2.6 - Prob. 1PCh. 2.6 - Prob. 2PCh. 2.6 - Prob. 3PCh. 2.6 - Prob. 4PCh. 2.6 - Prob. 5PCh. 2.6 - Prob. 6PCh. 2.6 - Prob. 7PCh. 2.6 - Prob. 8PCh. 2.6 - Prob. 9PCh. 2.6 - Prob. 10PCh. 2.6 - Prob. 11PCh. 2.6 - Prob. 12PCh. 2.6 - Prob. 13PCh. 2.6 - Prob. 14PCh. 2.6 - Prob. 15PCh. 2.6 - Prob. 16PCh. 2.6 - Prob. 17PCh. 2.6 - Prob. 18PCh. 2.6 - Prob. 19PCh. 2.6 - Prob. 20PCh. 2.6 - Prob. 21PCh. 2.6 - Prob. 22PCh. 2.6 - Prob. 23PCh. 2.6 - Prob. 24PCh. 2.6 - Prob. 25PCh. 2.6 - Prob. 26PCh. 2.6 - Prob. 27PCh. 2.6 - Prob. 28PCh. 2.6 - Prob. 29PCh. 2.6 - Prob. 30P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- A 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A salt solution with 1/5 pound of salt per gallon is added to the tank at 10 gal/min, and the resulting mixture is drained out at 5 gal/min. Let Q(t) denote the quantity (lbs) of salt at time t (min). (a) Write a differential equation for Q(t) which is valid up until the point at which the tank overflows. Q' (t) = = (b) Find the quantity of salt in the tank as it's about to overflow. esc C ✓ % 1 1 a 2 W S # 3 e d $ 4 f 5 rt 99 6 y & 7 h O u * 00 8 O 1 9 1 Oarrow_forwardThe following is used to model a wave that impacts a concrete wall created by the US Navy speed boat.1. Derive the complete piecewise function of F(t) and F()The concrete wall is 2.8 m long with a cross-section area of 0.05 m2. The force at time equal zero is 200 N. It is also known that the mass is modeled as lumped at the end of 1200 kg and Young’s modulus of 3.6 GPa2. Use *Matlab to simulate and plot the total response of the system at zero initial conditions and t0 = 0.5 sarrow_forwardV Obtain the expression for y(t) which is satisfying the differential equation ÿ + 3y+ 2y = et y(0)=0 and y(0)=0arrow_forward
- Q2/ The pipe in Fig. is driven by pressurized air in the tank. What is the friction factor (f) when the water flow rate through pipe is ( 85 m/hr ) and the pressure at point 1 is (2500 kPa). (25Marks) 30m smooth pipe d = 70mm open jet P1 1 90m 15m 60marrow_forwarda. For the function and point below, find f'(a). b. Determine an equation of the line tangent to the graph of f at (a,f(a)) for the given value of a. f(x) = 2x°, a = 1 %3D ..... a. f'(a) =arrow_forwardA reservoir discharging water through sluices at a depth hbelow the water surface area Afor various values has given below: hft1011121314( . .)Asqft9501070120013501530If tdenotes time in minutes, the rate of fall of the surface is given by 48dhhAdtEstimate the time taken for the water level to fall from 14 to 10 ft. above the sluices.arrow_forward
- Problem 1 The position x as a function of time of a particle that moves along a straight line is given by: r(1) = (-3 + 41)c 0. f1 0.1t The velocity v(t) of the particle is determined by the derivative of r(t) with respect to t, and the accelerationa(t) is determined by the derivative ofv(t) with respect to t. Derive the expressions for the velocity and acceleration of the particle, and make plots of the position, velocity, and acceleration as functions of time for0arrow_forwardI A bob attached to a cord is moved to the right where its vertical position is 1.05 cm above the equilibrium position and is then given an initial speed of 0.6 m/s. What are the values of the maximum speed and maximum height reached by the bob? (Take g = 9.8 m/s') (a) hmax (b)hmax =D1.87 cm; tnax 3.44 m/s (c) hmax (d) hmax 2.89 cm; Vnax = 0.75 m/s 1.87 cm; max 0.75 m/s 2.89 cm; 1,ax 3.44 m/s or frequency to 2/:arrow_forward2. Heat conduction in a square plate Three sides of a rectangular plate (@ = 5 m, b = 4 m) are kept at a temperature of 0 C and one side is kept at a temperature C, as shown in the figure. Determine and plot the ; temperature distribution T(x, y) in the plate. The temperature distribution, T(x, y) in the plate can be determined by solving the two-dimensional heat equation. For the given boundary conditions T(x, y) can be expressed analytically by a Fourier series (Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, 1993):arrow_forwardPlease solve.arrow_forwardThe cross-sectional area: A = (π/4) d^2arrow_forward2. The flight of a model rocket can be modeled as follows. During the first 0.15 s the rocket is propelled upward by the rocket engine with a force of 16 N. The rocket then flies up while slowing down under the force of gravity. After it reaches the apex, the rocket starts to fall back down. When its downward velocity reaches 20 m/s, a parachute opens (assumed to open instantly), and the rocket continues to drop at a constant speed of 20 m/s until it hits the ground. Write a program that calculates and plots the speed and altitude of the rocket as a function of time during the flight.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColeC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr