Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.1, Problem 27P
(a)
Program Plan Intro
Program Description: Purpose ofproblem is to calculate the time when
Summary introduction: The population
(b)
Program Plan Intro
Program Description: Purpose ofproblem is to calculate the time when doomsday occurs.
Summary introduction: The population
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a gas in a piston-cylinder device in which the temperature is held
constant. As the volume of the device was changed, the pressure was mecas-
ured. The volume and pressure values are reported in the following table:
Volume, m
Pressure, kPa,
when I= 300 K
2494
1247
831
4
623
5
499
416
(a) Usc lincar interpolation to estimate the pressure when the volume is 3.8 m.
(b) Usc cubic splinc interpolation to cstimate the pressure when the vol-
ume is 3.8 m.
(c) Usc lincar interpolation to cstimate the volume if the pressure is meas-
ured to be 1000 kPa.
(d) Usc cubic splinc interpolation to cstimate the volume if the pressure is
mcasured to be 1000 kPa.
4.
A particle of (mass= 4 g, charge%3 80 mC) moves in a region of space where the electric field is uniform and is given by E, =-2.5 N/C,
E = E, = 0. If the velocity of the particle at t = 0 is given by Vz =
276 m/s, v, = v, = 0, what is the speed of the particle at t = 2 s?
%3D
(in m/s)
I need the answer as soon as possible
Q4/ The ideal gas equation of states is given by:
PV = nRT
Where: P is the pressure, V is the volume, T is the temperature, R=0.08206 (L
atm)/(mol K) is the ideal gas constant, and n is the number of moles. Real gases,
especially at high pressures, deviate from this behavior. Their responses can be
modeled with the van der Waals equation:
nRT
using matlab
V-nb
+
n² a
V²
Where a and b are gas constants. For Cl₂ a = 6.579 L'atm/mol², and b = 0.0562 L/mol.
(a) Write a code which asks the user to insert n, T, a, b and then plots P versus V on
one figure - two plots for both equations if the volume range is (0.5
Chapter 2 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 2.1 - Prob. 1PCh. 2.1 - Prob. 2PCh. 2.1 - Prob. 3PCh. 2.1 - Prob. 4PCh. 2.1 - Prob. 5PCh. 2.1 - Prob. 6PCh. 2.1 - Prob. 7PCh. 2.1 - Prob. 8PCh. 2.1 - Prob. 9PCh. 2.1 - Prob. 10P
Ch. 2.1 - Prob. 11PCh. 2.1 - Prob. 12PCh. 2.1 - Prob. 13PCh. 2.1 - Prob. 14PCh. 2.1 - Prob. 15PCh. 2.1 - Prob. 16PCh. 2.1 - Prob. 17PCh. 2.1 - Prob. 18PCh. 2.1 - Prob. 19PCh. 2.1 - Prob. 20PCh. 2.1 - Prob. 21PCh. 2.1 - Suppose that at time t=0, half of a logistic...Ch. 2.1 - Prob. 23PCh. 2.1 - Prob. 24PCh. 2.1 - Prob. 25PCh. 2.1 - Prob. 26PCh. 2.1 - Prob. 27PCh. 2.1 - Prob. 28PCh. 2.1 - Prob. 29PCh. 2.1 - A tumor may be regarded as a population of...Ch. 2.1 - Prob. 31PCh. 2.1 - Prob. 32PCh. 2.1 - Prob. 33PCh. 2.1 - Prob. 34PCh. 2.1 - Prob. 35PCh. 2.1 - Prob. 36PCh. 2.1 - Prob. 37PCh. 2.1 - Fit the logistic equation to the actual U.S....Ch. 2.1 - Prob. 39PCh. 2.2 - Prob. 1PCh. 2.2 - Prob. 2PCh. 2.2 - Prob. 3PCh. 2.2 - Prob. 4PCh. 2.2 - Prob. 5PCh. 2.2 - Prob. 6PCh. 2.2 - Prob. 7PCh. 2.2 - Prob. 8PCh. 2.2 - Prob. 9PCh. 2.2 - Prob. 10PCh. 2.2 - Prob. 11PCh. 2.2 - Prob. 12PCh. 2.2 - Prob. 13PCh. 2.2 - Prob. 14PCh. 2.2 - Prob. 15PCh. 2.2 - Prob. 16PCh. 2.2 - Prob. 17PCh. 2.2 - Prob. 18PCh. 2.2 - Prob. 19PCh. 2.2 - Prob. 20PCh. 2.2 - Prob. 21PCh. 2.2 - Prob. 22PCh. 2.2 - Prob. 23PCh. 2.2 - Prob. 24PCh. 2.2 - Use the alternatives forms...Ch. 2.2 - Prob. 26PCh. 2.2 - Prob. 27PCh. 2.2 - Prob. 28PCh. 2.2 - Consider the two differentiable equation...Ch. 2.3 - The acceleration of a Maserati is proportional to...Ch. 2.3 - Prob. 2PCh. 2.3 - Prob. 3PCh. 2.3 - Prob. 4PCh. 2.3 - Prob. 5PCh. 2.3 - Prob. 6PCh. 2.3 - Prob. 7PCh. 2.3 - Prob. 8PCh. 2.3 - A motorboat weighs 32,000 lb and its motor...Ch. 2.3 - A woman bails out of an airplane at an altitude of...Ch. 2.3 - According to a newspaper account, a paratrooper...Ch. 2.3 - Prob. 12PCh. 2.3 - Prob. 13PCh. 2.3 - Prob. 14PCh. 2.3 - Prob. 15PCh. 2.3 - Prob. 16PCh. 2.3 - Prob. 17PCh. 2.3 - Prob. 18PCh. 2.3 - Prob. 19PCh. 2.3 - Prob. 20PCh. 2.3 - Prob. 21PCh. 2.3 - Suppose that =0.075 (in fps units, with g=32ft/s2...Ch. 2.3 - Prob. 23PCh. 2.3 - The mass of the sun is 329,320 times that of the...Ch. 2.3 - Prob. 25PCh. 2.3 - Suppose that you are stranded—your rocket engine...Ch. 2.3 - Prob. 27PCh. 2.3 - (a) Suppose that a body is dropped (0=0) from a...Ch. 2.3 - Prob. 29PCh. 2.3 - Prob. 30PCh. 2.4 - Prob. 1PCh. 2.4 - Prob. 2PCh. 2.4 - Prob. 3PCh. 2.4 - Prob. 4PCh. 2.4 - Prob. 5PCh. 2.4 - Prob. 6PCh. 2.4 - Prob. 7PCh. 2.4 - Prob. 8PCh. 2.4 - Prob. 9PCh. 2.4 - Prob. 10PCh. 2.4 - Prob. 11PCh. 2.4 - Prob. 12PCh. 2.4 - Prob. 13PCh. 2.4 - Prob. 14PCh. 2.4 - Prob. 15PCh. 2.4 - Prob. 16PCh. 2.4 - Prob. 17PCh. 2.4 - Prob. 18PCh. 2.4 - Prob. 19PCh. 2.4 - Prob. 20PCh. 2.4 - Prob. 21PCh. 2.4 - Prob. 22PCh. 2.4 - Prob. 23PCh. 2.4 - Prob. 24PCh. 2.4 - Prob. 25PCh. 2.4 - Prob. 26PCh. 2.4 - Prob. 27PCh. 2.4 - Prob. 28PCh. 2.4 - Prob. 29PCh. 2.4 - Prob. 30PCh. 2.4 - Prob. 31PCh. 2.5 - Prob. 1PCh. 2.5 - Prob. 2PCh. 2.5 - Prob. 3PCh. 2.5 - Prob. 4PCh. 2.5 - Prob. 5PCh. 2.5 - Prob. 6PCh. 2.5 - Prob. 7PCh. 2.5 - Prob. 8PCh. 2.5 - Prob. 9PCh. 2.5 - Prob. 10PCh. 2.5 - Prob. 11PCh. 2.5 - Prob. 12PCh. 2.5 - Prob. 13PCh. 2.5 - Prob. 14PCh. 2.5 - Prob. 15PCh. 2.5 - Prob. 16PCh. 2.5 - Prob. 17PCh. 2.5 - Prob. 18PCh. 2.5 - Prob. 19PCh. 2.5 - Prob. 20PCh. 2.5 - Prob. 21PCh. 2.5 - Prob. 22PCh. 2.5 - Prob. 23PCh. 2.5 - Prob. 24PCh. 2.5 - Prob. 25PCh. 2.5 - Prob. 26PCh. 2.5 - Prob. 27PCh. 2.5 - Prob. 28PCh. 2.5 - Prob. 29PCh. 2.5 - Prob. 30PCh. 2.6 - Prob. 1PCh. 2.6 - Prob. 2PCh. 2.6 - Prob. 3PCh. 2.6 - Prob. 4PCh. 2.6 - Prob. 5PCh. 2.6 - Prob. 6PCh. 2.6 - Prob. 7PCh. 2.6 - Prob. 8PCh. 2.6 - Prob. 9PCh. 2.6 - Prob. 10PCh. 2.6 - Prob. 11PCh. 2.6 - Prob. 12PCh. 2.6 - Prob. 13PCh. 2.6 - Prob. 14PCh. 2.6 - Prob. 15PCh. 2.6 - Prob. 16PCh. 2.6 - Prob. 17PCh. 2.6 - Prob. 18PCh. 2.6 - Prob. 19PCh. 2.6 - Prob. 20PCh. 2.6 - Prob. 21PCh. 2.6 - Prob. 22PCh. 2.6 - Prob. 23PCh. 2.6 - Prob. 24PCh. 2.6 - Prob. 25PCh. 2.6 - Prob. 26PCh. 2.6 - Prob. 27PCh. 2.6 - Prob. 28PCh. 2.6 - Prob. 29PCh. 2.6 - Prob. 30P
Knowledge Booster
Similar questions
- I need the answer as soon as possible Q4/ The ideal gas equation of states is given by: PV = nRT Where: P is the pressure, V is the volume, T is the temperature, R=0.08206 (L atm)/(mol K) is the ideal gas constant, and n is the number of moles. Real gases, especially at high pressures, deviate from this behavior. Their responses can be modeled with the van der Waals equation: nRT using matlab P- V-nb n² a v² 0 Where a and b are gas constants. For Cl₂ a = 6.579 L'atm/mol², and b = 0.0562 L/mol. (a) Write a code which asks the user to insert n, T, a, b and then plots P versus V on one figure - two plots for both equations if the volume range is (0.5arrow_forwardI need the answer as soon as possiblearrow_forwardWe are given that the incubation time is normally distributed with a mean of 35 days and standard deviation of 2 days. Therefore, ? = and ? = .We wish to determine how many of the 10,000 eggs can be expected to hatch in 31 to 39 days. Since 35 − 31 = 4, 31 days is located standard deviations to the left of the mean. Similarly, 39 days is located standard deviations to the right of the mean.arrow_forwardAn insulated, electrically-heated (100 kW) tank contains400 kg of water at 65°C when its power is lost. Water iswithdrawn at a steady rate of 0.4 kg/s and cold water (at12°C) enters the tank at the same rate. Assume the tankis well-mixed, and neglect heat gains or losses throughthe tank walls. For the water, c=cp=cv=4200 J/kg C(a) Create a script (m-file) in MATLAB to calculate howlong will it take for the tank’s temperature to fall to 25°C.(b) Display the entire program code used for your scriptcreated in MATLAB. Make sure that running the scriptprovides a numeric result and include your name as acomment.arrow_forwardThe voltage V(1) (in V) and the current i(t) (in Amp) t seconds after closing the switch in the circuit shown are given by: R Vdt) = V(1– e/) i(t) = e, where t, = RC is the time constant. Consider the case where V = 24 V, R = 3800 2 and C = 4000 x 10-6 F. Determine the voltage and the current during the first 20 s after the switch is closed. Create a vector with values of times from 0 to 20 s with spacing of 2 s, and use it for calculating V(1) and i(t). Display the results in a three-column table where the values of time. voltage and current are displayed in the first, second, and third columns, respectively. (To display values in a Table, just create matrix and have its output displayed) Script ® C Reset I MATLAB Documentation 1 %Don't change the variable name 2 table =arrow_forwardSolve with Python: Compute the steady-state distribution of concentration for the tank shown in Fig. P32.4. The PDE governing this system is D((∂^2c/∂x^2) + (∂^2c/∂y^2)) − kc = 0 and the boundary conditions are as shown. Employ a value of 0.6 for D and 0.1 for k.arrow_forwardProve, by finding constants C₁, C₂, and no that satisfy the definition of order of magnitude, that f = (g) if f(x) = 3x³ - 7x and g(x) = x³12.arrow_forwardSolve by MATLABarrow_forwardPlease help step to step with Program R (CS) with explanation and final code for understanding thank you.arrow_forwardThe width of a rectangular piece of land is measured to be 48.25ft,if the measurement has a relative error of T of at most 2%,then what is an upper bound for the absolute error? Suppose the ambient temperature is A = 76.2° ± 0.4°F. In what interval does the true temperature lie?arrow_forward1. In a two-class problem, the likelihood ratio is p(x|C₁) p(x|C₂) Write the discriminant function in terms of the likelihood ratio.arrow_forwardplease solve allarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole