Concept explainers
Three seconds after a gun is fired, the person who fired the gun hears an echo. How far away was the surface that reflected the sound of the shot? Use 340 m/s for the speed of sound.
The distance of the surface, which reflected the sound of the shot, from the observer when the observer hears the echo of the sound of gun fire after
Answer to Problem 22SP
Solution:
Explanation of Solution
Given Data:
Speed of the sound is
Time of receiving the echo is
Formula Used:
The formula for distance is
Here,
Explanation:
Echo is defined as the reflection of sound thatreaches to the observer after reflection from any surface with some delay.
Thus, the distance travelled by the sound during the echo is twice the distance of the reflecting surface from the observer.
Here,
Recall the formula of the distance travelled:
Substitute
Substitute
Conclusion:
The distance of the reflecting surface is
Want to see more full solutions like this?
Chapter 23 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardThe Doppler equation presented in the text is valid when the motion between the observer and the source occurs on a straight line so that the source and observer are moving either directly toward or directly away from each other. If this restriction is relaxed, one must use the more general Doppler equation f=(v+vocosovvscoss)f where o and s are defined in figure P13.7la. Use the preceding equation to solve the following problem. A train moves at a constant speed of v = 25.0 m/s toward the intersection shown in Figure P13.71b. A car is stopped near the crossing, 30.0 m from the tracks. The trains horn emits a frequency of 500 Hz when the train is 40.0 m from the intersection. (a) What is the frequency heard by the passengers in the car? (b) If the train emits this sound continuously and the car is stationary at this position long before the train arrives until long after it leaves, what range of frequencies do passengers in the car hear? (c) Suppose the car is foolishly trying to beat the train to the intersection and is traveling at 40.0 m/s toward the tracks. When the car is 30.0 m from the tracks and the train is 40.0 m from the intersection, what is the frequency heard by the passengers in the car now?arrow_forwardHow many times a minute does a boat bob up and down on ocean waves that have a wavelength of 40.0 m and a propagation speed of 5.00 m/s?arrow_forward
- An airplane is flying at Mach 1.50 at an altitude of 7500.00 meters, where the speed of sound is v=343.00 m/s. How far away from a stationary observer will the plane be when the observer hears the sonic boom?arrow_forwardA siren mounted 011 the roof of a firehouse emits sound at a frequency of 900 Hz. A steady wind is blowing with a speed of 15.0 m/s. Taking the speed of sound in calm air to be 343 m/s. find the wavelength of the sound (a) upwind of the siren and (b) downwind of the siren. Firefighters are approaching the siren from various directions at 15.0 m/s. What frequency does a firefighter hear (c) if she is approaching from an upwind position so that site is moving in the direction in which the wind is blowing and (d) if she is approaching from a downwind position and moving against the wind?arrow_forwardStudent A runs after Student B. Student A carries a tuning fork ringing at 1024 Hz, and student B carries a tuning fork ringing at 1000 Hz. Student A is running at a speed of vA=5.00 m/s and Student B is running at vB=6.00 m/s. What is the beat frequency heard by each student? The speed of sound is v=343.00 m/s.arrow_forward
- What frequency is received by a mouse just before being dispatched by a hawk flying at it at 25.0 m/s and emitting a screech of frequency 3500 Hz? Take the speed of sound to be 331 m/s.arrow_forwardA sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forwardDuring a 4th of July celebration, an M80 firework explodes on the ground, producing a bright flash and a loud bang. The air temperature of the night air is TF=90.00F . Two observers see the flash and hear the bang. The first observer notes the time between the flash and the bang as 1.00 second. The second observer notes the difference as 3.00 seconds. The line of sight between the two observers meet at a right angle as shown below. What is the distance x between the two observers?arrow_forward
- A source of sound vibrates with constant frequency. Rank the frequency of sound observed in the following cases from highest to the lowest. If two frequencies are equal, show their equality in your ranking. All the motions mentioned have the same speed, 25 m/s. (a) The source and observer are stationary. (b) The source is moving toward a stationary observer. (c) The source is moving away from a stationary observer. (d) The observer is moving toward a stationary source. (e) The observer is moving away from a stationary source.arrow_forwardWind gusts create ripples on the ocean that have a wavelength at 5.00 cm and propagate at 2.00m/s. What is their frequency?arrow_forwardOn a 20°C°C night, a bat hovering in the air emits an ultrasonic chirp that has a frequency of 45 kHzkHz. It hears an echo 60 msms later. Suppose the object is an insect flying straight away from the bat. What is the insect's speed if the ultrasonic echo is shifted down in frequency by 750 Hz?arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College