Universe: Stars And Galaxies
Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 22, Problem 19Q
To determine

The way that orbits of stars in the galactic disk are different from the orbits of planets in our solar system and the factor that the difference implies about the way that matter is distributed in the galaxy.

Blurred answer
Students have asked these similar questions
A galaxy's rotation curve is a measure of the orbital speed of stars as a function of distance from the galaxy's centre. The fact that rotation curves are primarily flat at large galactocen- tric distances (vrot(r) ~ constant) is the most common example of why astronomer's believe dark matter exists. Let's work out why! Assuming that each star in a given galaxy has a circular orbit, we know that the accelera- tion due to gravity felt by each star is due to the mass enclosed within its orbital radius r and equal to v?/r. Here, ve is the circular orbit velocity of the star. (a) Show that the expected relationship between ve and r due to the stellar halo (p(r) xr-3.5) does not produce a flat rotation curve. (b) Show that a p(r) ∞ r¯² density profile successfully produces a flat ro- tation curve and must therefore be the general profile that dark matter follows in our galaxy.
Suppose that stars were born at random times over the last 1010 years. The rate of star formation is simply the number of stars divided by 1010 years. The fraction of stars with detected extrasolar planets is at least 18%. The rate of star formation can be multiplied by this fraction to find the rate planet formation. How often (in years) does a planetary system form in our galaxy? Assume the Milky Way contains 8 × 1011 stars.
The Sun is moving at 220 ??/? around the Galactic Center at a more-or-less constant distance of 8.5 ???. To appreciate how remarkable this is, consider the following questions: a) How massive would the Sun have to be for the Earth to have an orbital velocity of 220 km/s at 1 AU? b) How fast would the Earth move if it was in orbit around the Sun at a distance of 8.5 kpc? Of course, you may ignore the effects of all other stars in this calculation.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax