Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 19E
Suppose you wanted to observe a planet around another star with direct imaging. Would you try to observe in visible light or in the infrared? Why? Would the planet be easier to see if it were at 1 AU or 5 AU from its star?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of
this planet? Give your answer in terms of the radius of Jupiter.
Brightness of Star
Residual Flux
0.99
0.98
0.97
0.006
0.002
0.000
-8-881
-0.06
-0.04
-0.02
0.00
Time (days) →
0.02
0.04
0.06
What is the temperature for a very reflective, nearly white planet with a reflectivity of 99.3% at a distance of 1 AU ?
Venus can be as bright as apparent magnitude -4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 5 pc? Assume Venus has the same illumination
phase from your new vantage point. (Hints: Recall the inverse square law; also, review the definition of apparent visual magnitudes. ote: 1 pc = 2.1 x 10° AU).
times fainter
What would its apparent magnitude be?
Need Help?
Read It
Chapter 21 Solutions
Astronomy
Ch. 21 - Give several reasons the Orion molecular cloud is...Ch. 21 - Why is star formation more likely to occur in cold...Ch. 21 - Why have we learned a lot about star formation...Ch. 21 - Describe what happens when a star forms. Begin...Ch. 21 - Describe how the T Tauri star stage in the life of...Ch. 21 - Look at the four stages shown in Figure 21.8. In...Ch. 21 - The evolutionary track for a star of 1 solar mass...Ch. 21 - Two protostars, one 10 times the mass of the Sun...Ch. 21 - Compare the scale (size) of a typical dusty disk...Ch. 21 - Why is it so hard to see planets around other...
Ch. 21 - Why did it take astronomers until 1995 to discover...Ch. 21 - Which types of planets are most easily detected by...Ch. 21 - List three ways in which the exoplanets we have...Ch. 21 - List any similarities between discovered...Ch. 21 - What revisions to the theory of planet formation...Ch. 21 - Why are young Jupiters easier to see with direct...Ch. 21 - A friend of yours who did not do well in her...Ch. 21 - Observations suggest that it takes more than 3...Ch. 21 - Suppose you wanted to observe a planet around...Ch. 21 - Why were giant planets close to their stars the...Ch. 21 - Exoplanets in eccentric orbits experience large...Ch. 21 - When astronomers found the first giant planets...Ch. 21 - An exoplanetary system has two known planets....Ch. 21 - Kepler’s third law says that the orbital period...Ch. 21 - Calculate the transit depth for an M dwarf star...Ch. 21 - If a transit depth of 0.00001 can be detected with...Ch. 21 - What fraction of gas giant planets seems to have...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What do we mean by astrobiology? What are the major areas of research in astrobiology?
Life in the Universe (4th Edition)
Calculate the total thermal energy in a liter of helium at room temperature and atmospheric pressure. Then repe...
An Introduction to Thermal Physics
An electric drill draws 4.6 A rms at 120 V rms. If the current lags the voltage by 25, whats the drills power c...
Essential University Physics (3rd Edition)
(II) A 12.0-V battery (assume the internal resistance = 0) is connected to two resistors in series. A voltmeter...
Physics for Scientists and Engineers with Modern Physics
38. * EST (a) A 50-kg skater initially at rest throws a 4-kg medicine ball horizontally. Describe what happens ...
College Physics
In the orbiting Space Shuttle, you are handed two identical closed boxes, one filled with sand and the other fi...
Conceptual Integrated Science
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Venus can be as bright as apparent magnitude 4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 1 pc? What would its apparent magnitude be? Assume Venus has the same illumination phase from your new vantage point. (Hints: Recall the inverse square law, Section 9-2a; also, review the definition of apparent visual magnitudes, Chapter 2.) (Note: 1 pc = 2.1 105 AU.)arrow_forwardIf you observed the Solar System from the vantage point of the nearest star, at a distance of 1.3 pc, what would the maximum angular separation be between Earth and the Sun? (Hint: Use the small-angle formula, Eq. 3-1.) (Note: 1 pc = 2.1 105 AU.)arrow_forwardVenus can be as bright as apparent magnitude −4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 1 pc? What would its apparent magnitude be? Assume Venus has the same illumination phase from your new vantage point. (Hints: Light follows an inverse square law as does gravity, review Section 5-1c; also, review the definition of apparent visual magnitudes, Chapter 2.) (Note: 1 pc = 2.1 × 105 AU.)arrow_forward
- Do all planetary systems look the same as our own?arrow_forwardVenus can be as bright as apparent magnitude −4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 7 pc? Assume Venus has the same illumination phase from your new vantage point. (Hints: Recall the inverse square law; also, review the definition of apparent visual magnitudes. Note: 1 pc = 2.1 ✕ 105 AU). [fill in the blank] times fainter What would its apparent magnitude be?arrow_forwardThe International Space Station is about 90 meters across and about 380 kilometers away. One night it appears to be the same angular size as Jupiter. Jupiter is 143,000 km in size. Use S = r x a to figure out how far away Jupiter is in AU. Note 1 AU = 1.5 x 108 kmarrow_forward
- Venus can be as bright as apparent magnitude −4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 7 pc? Assume Venus has the same illumination phase from your new vantage point. (Hints: Recall the inverse square law; also, review the definition of apparent visual magnitudes. Note: 1 pc = 2.1 ✕ 105 AU). What would its apparent magnitude be?arrow_forwardVenus can be as bright as apparent magnitude -4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 5 pc? Assume Venus has the same illumination phase from your new vantage point. (Hints: Recall the inverse square law; also, review the definition of apparent visual magnitudes. Note: 1 pc = 2.1 x 105 AU). times fainter What would its apparent magnitude be?arrow_forwardI need help with this question! There is only one part to it!arrow_forward
- Use this light curve of a star with a transiting exoplanet to answer the following. If the exoplanet is orbiting a star identical to our own Sun, what is its average orbital distance, in AU? What is the period in years of the transiting exoplanet? Use this light curve of a star with a transiting exoplanet to answer the following questions. Brightness 0 V V V B 5 10 15 20 Time (months) 25 30 35arrow_forwardWhat would be the angular diameter (in arc seconds) of a planet with diameter 8.5 x 105 km and orbital distance from it's star of 175 x 108 km as seen from a planet with. orbital distance from the same star of 70 x 107 km as seen from their closest approach?arrow_forwardNo handwrittenarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY