College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 15P
* Your friend thinks that an induced magnetic field is always opposite the changing external field that induces an
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
College Physics
Ch. 21 - Review Question 21.1 Your friend thinks that...Ch. 21 - Review Question 21.2 You have a bar magnet and a...Ch. 21 - Review Question 21.3 What difficulty would occur...Ch. 21 - Review Question 21.4 Why do we write the law of...Ch. 21 - Review Question 21.5 How does the law of...Ch. 21 - Review Question 21.6 A capacitor in an electric...Ch. 21 - Prob. 7RQCh. 21 - Review Question 21.8 Explain how (a) an electric...Ch. 21 - 1. In which of the experiments with a loop and a...Ch. 21 - If you move the coil in Figure Q21.2 toward the N...
Ch. 21 - The magnetic flux through a 100-cm2 loop is...Ch. 21 - Your friend says that the emf induced in a coil...Ch. 21 - 5. A metal ring lies on a table. The S pole of a...Ch. 21 - 6. One coil is placed on lop of another The bottom...Ch. 21 - Two coils are placed next to each other flat on...Ch. 21 - 8. Two identical bar magnets are dropped...Ch. 21 - A windows metal frame is essentially a metal loop...Ch. 21 - Four identical loops move at the same velocity...Ch. 21 - A 12-V automobile battery provides the thousands...Ch. 21 - A respiration detector consists of a coil placed...Ch. 21 - A parallel plate capacitor and a lightbulb are...Ch. 21 - Prob. 14MCQCh. 21 - A bar magnet falling with the north pole facing...Ch. 21 - 16. An induction cooktop has a smooth surface When...Ch. 21 - Describe three common applications of...Ch. 21 - 18. Two rectangular loops A and B are near each...Ch. 21 - A simple metal detector has a coil with an...Ch. 21 - 20. Construct flux-versus-time and emf-versus-time...Ch. 21 - How is it possible to get a 2000-V emf from a...Ch. 21 - You connect a capacitor and a lightbulb in series...Ch. 21 - Prob. 23CQCh. 21 - * You and your friend are performing experiments...Ch. 21 - You decide to use a metal ring as an indicator of...Ch. 21 - * To check whether a lightbulb permanently...Ch. 21 - * Flashlight without batteries A flashlight that...Ch. 21 - You need to invent a practical application for a...Ch. 21 - * Detect burglars entering windows. Describe how...Ch. 21 - 7. * A coil connected to an ammeter can detect...Ch. 21 - * The B field in a region has a magnitude of 0.40...Ch. 21 - 9. EST How do you position a bicycle tire so that...Ch. 21 - * EST Estimate the magnetic flux through your head...Ch. 21 - 11. * Estimate the magnetic flux through the...Ch. 21 - Prob. 12PCh. 21 - 13. You have the apparatus shown in Figure P21.13....Ch. 21 - * You suggest that eddy currents can stop the...Ch. 21 - * Your friend thinks that an induced magnetic...Ch. 21 - The magnetic flux through three different coils is...Ch. 21 - 17. The magnetic flux through three different...Ch. 21 - 18. A magnetic field passing through two coils of...Ch. 21 - BIO Stimulating the brain in transcranial magnetic...Ch. 21 - * To measure a magnetic field produced by an...Ch. 21 - Prob. 21PCh. 21 - 22 * BIO Breathing monitor An apnea monitor for...Ch. 21 - 23. * A bar magnet induces a current in an -turn...Ch. 21 - * An experimental apparatus has two parallel...Ch. 21 - A Boeing 747 with a 65-m wingspan is cruising...Ch. 21 - Prob. 27PCh. 21 - 28. ** BIO EST Magnetic field and brain cells...Ch. 21 - * You need to test Faraday's law You have a...Ch. 21 - 30. * You build a coil of radius r (m) and place...Ch. 21 - * EST Generator for space station Astronauts on a...Ch. 21 - 35. * A toy electric generator has a 20-tum...Ch. 21 - 36. * A generator has a 450-turn coil that is 10...Ch. 21 - 39. * A generator has a 100-turn coil that rotates...Ch. 21 - Prob. 40PCh. 21 - * A rectangular wire loop is moving with constant...Ch. 21 - field that points into the page (Figure P21.42)....Ch. 21 - 43. The voltage across an AC power supply is given...Ch. 21 - 44. * The alternating current through a capacitor...Ch. 21 - * The alternating current through a solenoid is...Ch. 21 - 46. * The rms voltage of household AC in Europe is...Ch. 21 - Prob. 47PCh. 21 - Prob. 48PCh. 21 - 49. You need to build a transformer that can step...Ch. 21 - 50. Your home’s electric doorbell operates on 10...Ch. 21 - 51. A 9.0-V battery and switch are connected in...Ch. 21 - * You are fixing a transformer for a toy truck...Ch. 21 - 53. * A wire loop has a radius of 10 cm. A...Ch. 21 - BIO Hammerhead shark A hammerhead shark (Figure...Ch. 21 - ** You have a 12-V battery, some wire, a switch,...Ch. 21 - 61.* EST A sparker used to ignite lighter fluid in...Ch. 21 - * EST Design a magnetometer Your friend needs to...Ch. 21 - Prob. 63GPCh. 21 - 64 EST MRI Jose needs an MRI (magnetic resonance...Ch. 21 - * Magstripe reader A magstripe reader used to read...Ch. 21 - 66. Show that when a metal rod L meters long moves...Ch. 21 - 67. ** EST The Tower of Terror ride Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...
Additional Science Textbook Solutions
Find more solutions based on key concepts
EXOPLANETS. As planets with a wide variety of properties are being discovered outside our solar system, astrobi...
University Physics with Modern Physics (14th Edition)
1. How many significant figures does each of the following numbers have?
a. 0.73 b. 7.30 c. 73 d. 0.073
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Description of Motion: Initially move away from the detector; maintain a constant negative acceleration.
Tutorials in Introductory Physics
Write each number in decimal form.
30. 3.78 × 10–2
Applied Physics (11th Edition)
14. (II) The maximum gauge pressure in a hydraulic lift is 17.0 atm. What is the largest-size vehicle (kg) it c...
Physics: Principles with Applications
Briefly discuss the evidence for other mass extinctions, and list a few of their possible causes.
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A dc power line for a light-rail system caries 1000 A at an angle of 30.0 to Earth's 5.0105 T field, What is the force on a 100-m section of this line? (b) Discuss practical concerns this presents, if any.arrow_forwardUnreasonable Results A surveyor 100 m from a long straight 200-kV DC power line suspects that its magnetic field may equal that of the Earth and affect compass readings. (a) Calculate the current in the wire needed to create a 5.00105T field at this distance. (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?arrow_forward(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.001012N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in Earth's field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity' and noting that static is often absent,arrow_forward
- Construct Your Own Problem Consider a mass separator that applies a magnetic field perpendicular to the velocity of ions and separates the ions based on the radius of curvature of their paths in the field. Construct a problem in which you calculate the magnetic field strength needed to separate two ions that differ in mass, but not charge, and have the same initial velocity. Among the things to consider are the types of ions, the velocities they can be given before entering the magnetic field, and a reasonable value for the radius of curvature of the paths they follow. In addition, calculate the separation distance between the ions at the point where they are detected.arrow_forwardEddy current are induced currents set up in a piece of metal when it moves through a nonuniform magnetic field. For example, consider the flat metal plate swinging at the end of a bar as a pendulum, as shown in Figure CQ20.9. (a) At position 1, the pendulum is moving from a region where there is no magnetic field into a region where the field B is directed into the paper. Show that at position 1 the direction of the eddy current is counterclockwise. (b) At position 2, the pendulum is moving out of the field into a region of zero field. Show that the direction of the eddy current is clockwise in this case. (c) Use right-hand rule number 2 to show that these eddy currents lead to a magnetic force on the plate directed at shown in the figure. Because the induced eddy current always produces a retarding force when the plate enters or leaves the field, the swinging plate quickly comes to rest. Figure CQ20.9arrow_forwardA conductor consists of a circular loop of radius K and two long, straight sections as shown in Figure P50.7. The wire lies in the plane of the paper and carries a current I. (a) What is the direction of the magnetic field at the center of the loop? (b) Find an expression for the magnitude of the magnetic field at the center of the loop.arrow_forward
- (a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.001012N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by competing it with typical static electricity and noting that static is often absent.arrow_forwardUnreasonable Results (a) Find the charge on a baseball, thrown at 35.0 m/s perpendicular to the Earth’s 5.00105T field, that experiences a 1.00-N magnetic force. (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?arrow_forwardUnreasonable Results A charged particle having mass 6.641027kg (that of a helium atom) moving at 8.70105m/s perpendicular to a 1.50T magnetic field travels in a circular path of radius 16.0 mm. (a) What is the charge of the particle? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forward
- (a) A DC power line for a light-rail system carries 1000 A at an angle of 30.0° to the Earth’s 5.00105-T field. What is the force on a 100-m section of this line? (b) Discuss practical concerns this presents, if any.arrow_forwardUnreasonable Results Frustrated by the small Hall voltage obtained in blood flow measurements, a medical physicist decides to increase the applied magnetic field strength to get a 0.500V output for blood moving at 30.0 cm/s in a 1.50cmdiameter vessel. (a) What magnetic field strength is needed? (b) What is unreasonable about this result? (c) Which premise is responsible?arrow_forwardConstruct Your Own Problem Consider using the torque on a current-carrying coil in a magnetic field to detect relatively small magnetic fields (less than the field of the Earth, for example). Construct a problem in which you calculate the maximum torque on a current- carrying loop in a magnetic field. Among the things to be considered are the size of the coil, the number of loops it has, the current you pass through the coil, and the size of the field you wish to detect. Discuss whether the torque produced is large enough to be effectively measured. Your instructor may also wish for you to consider the effects, if any, of the field produced by the coil on the surroundings that could affect detection of the small field.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY