Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 8P
To determine
To show: The total amount of work required to assemble four identical charged particle of magnitude
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Show that the amount of work required to assemble four identical charged particles of magnitude Q at the corners of a square of side s is 5.41keQ2/s.
Given the magnitude of an electric field directed downward equals 100 N/C. If two point charges (qA and qB), qA=2000 V and qB= 1000V. The charges are located 10 cm apart. What is the field strength at qA?
A metal sphere of radius R=2.0 cm is suspended from the ceiling by an insulating rope. A point sphere with q=-3.OnC charge is fixed to the ground 3.0m below the center of the sphere. What could be the highest tensile force that can occur in the rope when the metal sphere begins to be charged with an electrical charge? (The electric field to ionize the air is 5x104 V/m.)
Chapter 20 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 20.1 - In Figure 20. 1, two points and are located...Ch. 20.2 - The labeled points in Figure 20.4 are on a series...Ch. 20.3 - A spherical balloon contains a positively charged...Ch. 20.3 - In Active Figure 20.8a, take q1 to be a negative...Ch. 20.4 - In a certain region of space, the electric...Ch. 20.7 - A capacitor stores charge Q at a potential...Ch. 20.8 - Prob. 20.7QQCh. 20.9 - Prob. 20.8QQCh. 20.10 - If you have ever tried to hang a picture or a...Ch. 20 - A parallel-plate capacitor is charged and then is...
Ch. 20 - Prob. 2OQCh. 20 - A proton is released from rest at the origin in a...Ch. 20 - By what factor is the capacitance of a metal...Ch. 20 - Prob. 5OQCh. 20 - Rank the potential energies of the four systems of...Ch. 20 - Prob. 7OQCh. 20 - In a certain region of space, a uniform electric...Ch. 20 - Prob. 9OQCh. 20 - Prob. 10OQCh. 20 - Prob. 11OQCh. 20 - A parallel-plate capacitor is connected to a...Ch. 20 - Rank the electric potential energies of the...Ch. 20 - Four particles are positioned on the rim of a...Ch. 20 - Prob. 15OQCh. 20 - A filament running along the x axis from the...Ch. 20 - An electronics technician wishes to construct a...Ch. 20 - Prob. 18OQCh. 20 - Prob. 19OQCh. 20 - A parallel-plate capacitor filled with air carries...Ch. 20 - Prob. 21OQCh. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Why is it dangerous to touch the terminals of a...Ch. 20 - Prob. 10CQCh. 20 - Prob. 11CQCh. 20 - Prob. 12CQCh. 20 - A uniform electric field of magnitude 325 V/m is...Ch. 20 - Prob. 2PCh. 20 - Calculate the speed of a proton that is...Ch. 20 - Prob. 4PCh. 20 - An electron moving parallel to the x axis has an...Ch. 20 - (a) Find the potential at a distance of 1.00 cm...Ch. 20 - Prob. 8PCh. 20 - Given two particles with 2.00-C charges as shown...Ch. 20 - Three particles with equal positive charges q are...Ch. 20 - The three charged particles in Figure P20.11 are...Ch. 20 - Prob. 12PCh. 20 - Prob. 13PCh. 20 - Review. A light, unstressed spring has length d....Ch. 20 - Review. Two insulating spheres have radii 0.300 cm...Ch. 20 - Review. Two insulating spheres have radii r1 and...Ch. 20 - Two particles each with charge +2.00 C are located...Ch. 20 - Prob. 18PCh. 20 - Two particles, with charges of 20.0 nC and 20.0...Ch. 20 - At a certain distance from a charged particle, the...Ch. 20 - A particle with charge +q is at the origin. A...Ch. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - A rod of length L (Fig. P20.26) lies along the x...Ch. 20 - For the arrangement described in Problem 26,...Ch. 20 - A wire having a uniform linear charge density is...Ch. 20 - A uniformly charged insulating rod of length 14.0...Ch. 20 - How many electrons should be removed from an...Ch. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - (a) How much charge is on each plate of a 4.00-F...Ch. 20 - Two conductors having net charges of +10.0 C and...Ch. 20 - Prob. 35PCh. 20 - A spherical capacitor consists of a spherical...Ch. 20 - Prob. 37PCh. 20 - A variable air capacitor used in a radio tuning...Ch. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - (a) Regarding the Earth and a cloud layer 800 m...Ch. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - (a) Find the equivalent capacitance between points...Ch. 20 - Four capacitors are connected as shown in Figure...Ch. 20 - Prob. 46PCh. 20 - According to its design specification, the timer...Ch. 20 - Prob. 48PCh. 20 - Prob. 49PCh. 20 - Three capacitors are connected to a battery as...Ch. 20 - Find the equivalent capacitance between points a...Ch. 20 - Consider the circuit shown in Figure P20.52, where...Ch. 20 - Prob. 53PCh. 20 - A parallel-plate capacitor has a charge Q and...Ch. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58PCh. 20 - Prob. 59PCh. 20 - Prob. 60PCh. 20 - A uniform electric field E = 3 000 V/m exists...Ch. 20 - Prob. 62PCh. 20 - Prob. 63PCh. 20 - Prob. 64PCh. 20 - Prob. 65PCh. 20 - A parallel-plate capacitor in air has a plate...Ch. 20 - Lightning can be studied with a Van de Graaff...Ch. 20 - Prob. 68PCh. 20 - Prob. 69PCh. 20 - Prob. 70PCh. 20 - Prob. 71PCh. 20 - Prob. 72PCh. 20 - Prob. 73PCh. 20 - Prob. 74PCh. 20 - Prob. 75PCh. 20 - Prob. 76PCh. 20 - Prob. 77PCh. 20 - Prob. 78PCh. 20 - Prob. 79PCh. 20 - Prob. 80PCh. 20 - Prob. 81PCh. 20 - Prob. 82PCh. 20 - A 10.0-F capacitor is charged to 15.0 V. It is...Ch. 20 - Two large, parallel metal plates, each of area A,...Ch. 20 - A capacitor is constructed from two square,...Ch. 20 - Two square plates of sides are placed parallel to...Ch. 20 - Determine the equivalent capacitance of the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many electrons should be removed from an initially uncharged spherical conductor of radius 0.300 m to produce a potential of 7.50 kV at the surface?arrow_forwardA proton is fired from very far away directly at a fixed particle with charge q = 1.28 1018 C. If the initial speed of the proton is 2.4 105 m/s, what is its distance of closest approach to the fixed particle? The mass of a proton is 1.67 1027 kg.arrow_forwardThree charges, q1 = 1 µC, q2 = 2 µC and q3 = 3 µC are placed in a line with 20 cm between %3D each of them. So qat a = 0, q2 at z = 20 cm and q3 at z = 40 cm. Calculate the energy stored in the collection of charges. (a) -0.62 J (b) -0.43 J (c) +0.43 J (d) +0.62 Jarrow_forward
- The surfaces of a lipid bi-layer forming the membrane around a cell with a radius of 1.2 µm has a residual charge qr = 9x10-15 C on outside of the bi-layer, and the same amount of negative charge on the inside. What is the force in pN (×10-12 N) on a singly-charged positive ion (q =1.6 x10-19 C) located on the outer surface of this membrane? Hint: Use F = q E = q (o/e) with o = qr/A = qr/ (4Tt r²) and ɛ, = 8.85 x 10-12 F-m-1. Answer: 8.99180 Farrow_forwardA point charge, q = +8.00 pC, and mass, m = 2.00 x 10-14 kg starts from rest on a planar, infinite sheet of charge with uniform charge density, +3.00 pC. When the point charge rises 1.00 cm above the infinite sheet, how fast will it be moving?arrow_forwardThe ink drops have a mass mmm = 1.00×10−11 kg each and leave the nozzle and travel horizontally toward the paper at velocity v = 15.0 m/s. The drops pass through a charging unit that gives each drop a positive charge q by causing it to lose some electrons. The drops then pass between parallel deflecting plates of length D = 2.15 cm, where there is a uniform vertical electric field with magnitude E = 7.70×104 N/C. If a drop is to be deflected a distance d = 0.340 mmmm by the time it reaches the end of the deflection plate, what magnitude of charge q must be given to the drop? Assume that the density of the ink drop is 1000 kg/m3, and ignore the effects of gravity.arrow_forward
- Three positive point charges on the corners of a square with side length 63m are 39µC(top left), 99µC(top right) and, 64µC(bottom right) what will be the magnitude of a forth charge (bottom left) in µC so that the total energy of the system becomes zero.arrow_forwardA small drop of water is suspended motionless in air by a uniform electric field that is directed upward and has a magnitude of 10000 N/C. The mass of the water drop is 5 x 10-9 kg (b) How many excess electrons or protons reside on the drop? Give your answer in scientific notation correct to one decimal place.arrow_forwardA small drop of water is suspended motionless in air by a uniform electric field that is directed upward and has a magnitude of 7420 N/C. The mass of the water drop is 4.78 × 10-9 kg. How many excess electrons or protons reside on the droparrow_forward
- A molecule of DNA (deoxyribonucleic acid) is 2.17 mm long. The ends of the molecule become singly ionized: negative on one end, positive on the other. The helical molecule acts like a spring and compresses 1.00% upon becoming charged. Determine the effective spring constant of the molecule.arrow_forwardTwo identical conducting spheres A and B are initially electrically neutral. Sphere A is given a charge of Q. The two spheres are then touched together, allowing charge to distribute evenly, and then separated. After separation, an external source removes a charge of Q/4 from sphere A. The two spheres are then touched together again and separated. What is the final charge on each sphere? Note: Assume the conductors and the interactions are ideal, meaning no loss of charge to the environment.arrow_forwardTwo red blood cells each have a mass of 5.05 × 10-¹4 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries -2.60 pC of charge and the other -2.70 pC, and each cell can be modeled as a sphere 8.20 µm in diameter. What minimum relative speed u would the red blood cells need when very far away from each other to get close enough to just touch? Ignore viscous drag from the surrounding liquid. V = What is the magnitude of the maximum acceleration amax of each cell? Cmax = m/s m/s²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY