Concept explainers
A capacitor is constructed from two square, metallic plates of sides ℓ and separation d. Charges +Q and −Q are placed on the plates, and the power supply is then removed. A material of dielectric constant K is inserted a distance x into the capacitor as shown in Figure P20.85. Assume d is much smaller than x. (a) Find the equivalent capacitance of the device. (b) Calculate the energy stored in the capacitor. (c) Find the direction and magnitude of the force exerted by the plates on the dielectric. (d) Obtain a numerical value for the force when x = ℓ/2, assuming ℓ = 5.00 cm, d = 2.00 mm, the dielectric is glass (κ = 4.50), and the capacitor was charged to 2.00 × 103 V before the dielectric was inserted. Suggestion: The system can be considered as two capacitors connected in parallel.
Figure P20.85
(a)
The equivalent capacitance of the device.
Answer to Problem 85P
The equivalent capacitance of the device is
Explanation of Solution
Write the expression for the equivalent capacitance.
Here,
Write the expression for the area with dielectrics.
Here,
Write the equation for capacitance by using equation (II).
Here,
Write the expression for the area without dielectrics.
Write the equation for capacitance by using equation (IV).
Conclusion:
Substitute,
Thus, the equivalent capacitance of the device is
(b)
The energy stored in the capacitor.
Answer to Problem 85P
The energy stored in the capacitor is
Explanation of Solution
Write the expression for the stored energy.
Here,
Conclusion:
Substitute,
Thus, the energy stored in the capacitor is
(c)
The direction and the magnitude of the force exerted by the plates on the dielectrics.
Answer to Problem 85P
The direction and the magnitude of the force exerted by the plates on the dielectrics is
Explanation of Solution
Write the expression exerted force.
Conclusion:
Substitute,
For
For
The force is directed along positive x-direction.
Thus, the direction and the magnitude of the force exerted by the plates on the dielectrics is
(d)
The numerical value of force.
Answer to Problem 85P
The numerical value of force is
Explanation of Solution
Write the expression for the area.
Write the expression for the initial capacitance.
Here,
Write the expression for the charge.
Write the expression for the given condition.
Write the expression for the force by using (VI), (VII), (VIII), (IX) and (X).
Conclusion:
Substitute,
Thus, the numerical value of force is
Want to see more full solutions like this?
Chapter 20 Solutions
Principles of Physics: A Calculus-Based Text
- What If? The two capacitors of Problem 13 (C1 = 5.00 F and C2 = 12.0 F) are now connected in series and to a 9.00-Y battery. Find (a) the equivalent capacitance of the combination. (b) the potential difference across each capacitor, and (c) the charge on each capacitor.arrow_forwardA parallel-plate capacitor has square plates of side s = 2.50 cm and plate separation d = 2.50 mm. The capacitor is charged by a battery to a charge Q = 4.00 C, after which the battery is disconnected. A porcelain dielectric ( = 6.5) is then inserted a distance y = 1.00 cm into the capacitor (Fig. P27.88). Hint: Consider the system as two capacitors connected in parallel. a. What is the effective capacitance of this capacitor? b. How much energy is stored in the capacitor? c. What are the magnitude and direction of the force exerted on the dielectric by the plates of the capacitor? Figure P27.88arrow_forwardA spherical capacitor consists of a spherical conducting shell of radius b and charge 2Q that is concentric with a smaller conducting sphere of radius a and charge +Q (Fig. P20.36). (a) Show that its capacitance is C=abke(ba) (b) Show that as b approaches infinity, the capacitance approaches the value a/ke = 40a. Figure P20.36arrow_forward
- Four capacitors are connected as shown in Figure P25.11. (a) Find the equivalent capacitance between points a and b. (b) Calculate the charge on each capacitor, taking Vab = 15.0 V. Figure P25.11arrow_forward(a) Find the equivalent capacitance between points a and b for the group of capacitors connected as shown in Figure P20.44. Take C1 = 5.00 F, C2 = 10.0 F, and C3 = 2.00 F. (b) What charge is stored on C3 if the potential difference between points a and b is 60.0 V? Figure P20.44arrow_forwardAn air-filled capacitor is made from two flat parallel plates 1.0 mm apart. The inside area of each plate is 8.0cm2. (a) What is the capacitance of this set of plates? (b) If the region between the plates is filled with a material whose dielectric constant is 6.0, what is the new capacitance?arrow_forward
- An electronics technician wishes to construct a parallel plate capacitor using rutile ( = 100) as the dielectric. The area of the plates is 1.00 cm2. What is the capacitance if the rutile thickness is 1.00 mm? (a) 88.5 pF (b) 177 pF (c) 8.85 F (d) 100 F (e) 35.4 Farrow_forwardFour capacitors are connected as shown in Figure P16.48. (a) Find the equivalent capacitance between points a and b. (b) Calculate the charge on each capacitor, taking Vab = 15.0 V. Figure P16.48arrow_forward(a) Regarding (lie Earth and a cloud layer 800 m above the Earth as the plates of a capacitor, calculate the capacitance of the Earth-cloud layer system. Assume the cloud layer has an area of 1.00 km2 and the air between the cloud and the ground is pure and dry'. Assume charge builds up on the cloud and on the ground until a uniform electric field of 3.00 106 N/C throughout the space between them makes the air break down and conduct electricity as a lightning bolt, (b) What is the maximum charge the cloud can hold?arrow_forward
- Find the equivalent capacitance between points a and b in the combination of capacitors shown in Figure P20.51. Figure P20.51arrow_forwardA parallel-plate capacitor has plates of area A = 7.00 102 m2 separated by distance d = 2.00 104 m. (a) Calculate the capacitance if the space between the plates is filled with air. What is the capacitance if the space is filled half with air and half with a dielectric of constant = 3.70 as in (b) Figure P16.56a, and (c) Figure P16.56b? (Hint: In (b) and (c), one of the capacitors is a parallel combination and the other is a series combination.) Figure P16.56arrow_forwardA parallel-plate capacitor with capacitance C0 stores charge of magnitude Q0 on plates of area A0 separated by distance d0. The potential difference across the plates is V0. If the capacitor is attached to a battery and the charge is doubled to 2Q0, what are the ratios (a) Cnew/C0 and (b) Vnew/V0? A second capacitor is identical to the first capacitor except the plate area is doubled to 2A0. If given a charge of Q0, what are the ratios (c) Cnew/C0 and (d) Vnew/V0? A third capacitor is identical to the first capacitor, except the distance between the plates is doubled to 2d0. If the third capacitor is then given a charge of Q0, what are the ratios (e) Cnew/C0 and (f) Vnew/V0?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning