EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 4P
(II) A typical compact car experiences a total drag force at 55 mi/h of about 350 N. If this car gets 35 miles per gallon of gasoline at this speed, and a liter of gasoline (1 gal = 3.8 L) releases about 3.2 × 107J when burned, what is the car’s efficiency?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(III) A typical compact car experiences a total drag force
of about 350 N at 55 mi/h. If this car gets 32 miles per
gallon of gasoline at this speed, and a liter of gasoline
(1 gal = 3.8 L) releases about 3.2 × 107 J when burned,
what is the car's efficiency?
(I) A heat engine exhausts 8200 J of heat while performing2600 J of useful work. What is the efficiency of this engine?
(II) A heat engine uses a heat source at 580°C and has an ideal(Carnot) efficiency of 22%. To increase the ideal efficiencyto 42%, what must be the temperature of the heat source?
Chapter 20 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 20.3 - Prob. 1AECh. 20.9 - Prob. 1DECh. 20 - Prob. 1QCh. 20 - Can you warm a kitchen in winter by leaving the...Ch. 20 - Would a definition of heat engine efficiency as e...Ch. 20 - Prob. 4QCh. 20 - Prob. 5QCh. 20 - The oceans contain a tremendous amount of thermal...Ch. 20 - Discuss the factors that keep real engines from...Ch. 20 - Prob. 8Q
Ch. 20 - Describe a process in nature that is nearly...Ch. 20 - (a) What happens if you remove the lid of a bottle...Ch. 20 - Prob. 11QCh. 20 - Prob. 12QCh. 20 - Give three examples, other than those mentioned in...Ch. 20 - Which do you think has the greater entropy, 1 kg...Ch. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - The first law of thermodynamics is sometimes...Ch. 20 - Powdered milk is very slowly (quasistatically)...Ch. 20 - Two identical systems are taken from state a to...Ch. 20 - It can he said that the total change in entropy...Ch. 20 - Prob. 22QCh. 20 - Prob. 23QCh. 20 - Prob. 1MCQCh. 20 - Prob. 2MCQCh. 20 - Prob. 3MCQCh. 20 - Prob. 4MCQCh. 20 - Prob. 5MCQCh. 20 - Prob. 6MCQCh. 20 - Prob. 7MCQCh. 20 - Prob. 8MCQCh. 20 - Prob. 9MCQCh. 20 - Prob. 10MCQCh. 20 - Prob. 11MCQCh. 20 - Prob. 12MCQCh. 20 - Prob. 1PCh. 20 - Prob. 2PCh. 20 - Prob. 3PCh. 20 - (II) A typical compact car experiences a total...Ch. 20 - Prob. 5PCh. 20 - (II) Figure 2017 is a PV diagram for a reversible...Ch. 20 - Prob. 7PCh. 20 - Prob. 8PCh. 20 - Prob. 9PCh. 20 - Prob. 10PCh. 20 - (II) (a) Show that the work done by a Carnot...Ch. 20 - Prob. 12PCh. 20 - Prob. 13PCh. 20 - Prob. 14PCh. 20 - (II) Assume that a 65 kg hiker needs 4.0 103 kcal...Ch. 20 - Prob. 16PCh. 20 - Prob. 18PCh. 20 - (III) A Carnot cycle, shown in Fig. 20-7, has the...Ch. 20 - (III) One mole of monatomic gas undergoes a Carnot...Ch. 20 - (III) In an engine that approximates the Otto...Ch. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - Prob. 27PCh. 20 - Prob. 28PCh. 20 - (II) An ideal heal pump is used to maintain the...Ch. 20 - Prob. 30PCh. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - Prob. 33PCh. 20 - Prob. 34PCh. 20 - Prob. 35PCh. 20 - (I) What is the change in entropy of 1.00 m3 of...Ch. 20 - Prob. 37PCh. 20 - (II) If 0.45kg f water at 100C is changed by a...Ch. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - Prob. 44PCh. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - (II) An ideal gas of n moles undergoes the...Ch. 20 - Prob. 49PCh. 20 - Prob. 50PCh. 20 - (II) Two samples of an ideal gas are initially at...Ch. 20 - (II) 1.00 mole of nitrogen (N2) gas and 1.00 mole...Ch. 20 - (II) (a) Why would you expect the total entropy...Ch. 20 - (II) Thermodynamic processes are sometimes...Ch. 20 - Prob. 55PCh. 20 - (III) Consider an ideal gas of n moles with molar...Ch. 20 - (III) A general theorem states that the amount of...Ch. 20 - Prob. 58PCh. 20 - (I) Use Eq. 2014 to determine the entropy of each...Ch. 20 - (II) Suppose that you repeatedly shake six coins...Ch. 20 - (II) (a) Suppose you have four coins, all with...Ch. 20 - Prob. 62PCh. 20 - Prob. 63PCh. 20 - Prob. 64PCh. 20 - Prob. 65PCh. 20 - Prob. 66PCh. 20 - Prob. 67GPCh. 20 - Prob. 68GPCh. 20 - A heat engine takes a diatomic gas around the...Ch. 20 - Prob. 70GPCh. 20 - Prob. 71GPCh. 20 - Prob. 72GPCh. 20 - The operation of a certain heat engine takes an...Ch. 20 - Prob. 74GPCh. 20 - Prob. 75GPCh. 20 - 1.00 mole of an ideal monatomic gas at STP first...Ch. 20 - Prob. 77GPCh. 20 - Prob. 78GPCh. 20 - Prob. 80GPCh. 20 - Prob. 82GPCh. 20 - The Stirling cycle shown in Fig 20-27, is useful...Ch. 20 - Prob. 84GPCh. 20 - Prob. 85GPCh. 20 - Thermodynamic processes can be represented not...Ch. 20 - An aluminum can, with negligible heat capacity, is...Ch. 20 - Prob. 88GPCh. 20 - A bowl contains a large number of red, orange, and...Ch. 20 - Prob. 90GPCh. 20 - Prob. 92GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which element is a maingroup metal with an even atomic number? a. K b. Ca c. Cr d. Se
Introductory Chemistry (6th Edition)
Level 2: Application/Analysis 4. Nitrifying bactcria participatc in the nitrogen cycle mainly by (A) converting...
Campbell Biology (11th Edition)
1. Write a single sentence, using no more than 25 words, to summarize each of the following cellular processes...
Human Anatomy & Physiology (2nd Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Water falls over a dam of height h with a mass flow rate of R, in units of kilograms per second. (a) Show that the power available from the water is P=Rgh where g is the free-fall acceleration. (b) Each hydroelectric unit at the Grand Coulee Dam takes in water at a rate of 8.50 105 kg/s from a height of 87.0 m. The power developed by the falling water is converted to electric power with an efficiency of 85.0%. How much electric power does each hydroelectric unit produce?arrow_forwardShow that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forwardSuppose 20 g of ice at 0 is added to 300 g of water at 60 . What is the total change in entropy of the mixture after it reaches thermal equilibrium?arrow_forward
- Give an example of a spontaneous process in which a system becomes less ordered and energy becomes less available to do work. What happens to the system's entropy in this process?arrow_forwardThe energy output of a heat pump is greater than the energy used to operate the pump. Why doesn't this statement violate the first law of thermodynamics?arrow_forwardTo increase the efficiency of a Carnot engine, should the temperature of the hot reservoir be raised or lowered? What about the cold reservoir?arrow_forward
- (I) A heat engine does 9200 J of work per cycle while absorbing 25.0 kcal of heat from a high-temperature reservoir. What is the efficiency of this engine?arrow_forward(i) Define the term entropy in thermodynamics. (ii) In what way entropy is related to third law of thermodynamics? Compare and contrast adiabatic processes and Cyclical processes in thermodynamics with necessary explanations and sketches. Let 1.00 kg of liquid water at 100°C be converted to steam at a pressure of 1.01 * 105 Pa. The volume of water changes from an initial value of 1.00 * 10-3 m3 as a liquid to 1.671 m3 as steam. The heat of vaporization is 2256 kJ/kg. (i) How much work is done by the system during the process? (ii) How much energy is transferred as heat? (iii) What is the change in the system’s energy during the process?arrow_forward(II) (a) What is the coefficient of performance of an idealheat pump that extracts heat from 6°C air outside anddeposits heat inside a house at 24°C? (b) If this heat pumpoperates on 1200 W of electrical power, what is the maximumheat it can deliver into the house each hour? see the attached problemarrow_forward
- (I) The exhaust temperature of a heat engine is 230°C. Whatis the high temperature if the Carnot efficiency is 34%?arrow_forward(II) A heat pump is used to keep a house warm at 22°C. How much work is required of the pump to deliver 3100 J of heat into the house if the outdoor temperature is (a) 0°C, (b) –15°C? Assume a COP of 3.0. (c) Redo for both temperatures, assuming an ideal (Carnot) coefficient of performance COP = TH/(TH – TL).arrow_forward(I) 1.0 kg of water is heated from 0°C to 100°C. Estimatethe change in entropy of the waterarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY