Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 13Q
To determine
The reason for not being able to observe planetary nebulae that are more than about 50,000 years old.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
suppose a planetary nebula is 2.8 pc in diameter, and doppler shifts in its spectrum show that the planetary nebula is 33 km/s. how old is the planetary nebula? 1 pc= 3.1 ×10^13 km and 1 yr= 3.2 × 10^7s
A planetary nebula expands at 38 km/s. How far will it expand (in km) in 3 million years?
The Orion Nebula is about 20 light-years (20 × 1018 cm) across, enclosing a roughly spherical area with a volume of 4.19 × 1057 cm3. Calculate the number of 0.1 solar mass stars that might be formed in such a nebula. Assume that the nebula has a density of 1000 atoms/cm3.
Chapter 20 Solutions
Universe: Stars And Galaxies
Ch. 20 - Prob. 1QCh. 20 - Prob. 2QCh. 20 - Prob. 3QCh. 20 - Prob. 4QCh. 20 - Prob. 5QCh. 20 - Prob. 6QCh. 20 - Prob. 7QCh. 20 - Prob. 8QCh. 20 - Prob. 9QCh. 20 - Prob. 10Q
Ch. 20 - Prob. 11QCh. 20 - Prob. 12QCh. 20 - Prob. 13QCh. 20 - Prob. 14QCh. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - Prob. 18QCh. 20 - Prob. 19QCh. 20 - Prob. 20QCh. 20 - Prob. 21QCh. 20 - Prob. 22QCh. 20 - Prob. 23QCh. 20 - Prob. 24QCh. 20 - Prob. 25QCh. 20 - Prob. 26QCh. 20 - Prob. 27QCh. 20 - Prob. 28QCh. 20 - Prob. 29QCh. 20 - Prob. 30QCh. 20 - Prob. 31QCh. 20 - Prob. 32QCh. 20 - Prob. 33QCh. 20 - Prob. 34QCh. 20 - Prob. 35QCh. 20 - Prob. 36QCh. 20 - Prob. 37QCh. 20 - Prob. 38QCh. 20 - Prob. 39QCh. 20 - Prob. 40QCh. 20 - Prob. 41QCh. 20 - Prob. 42QCh. 20 - Prob. 43QCh. 20 - Prob. 44QCh. 20 - Prob. 45QCh. 20 - Prob. 46QCh. 20 - Prob. 47QCh. 20 - Prob. 48QCh. 20 - Prob. 49QCh. 20 - Prob. 50QCh. 20 - Prob. 51QCh. 20 - Prob. 52QCh. 20 - Prob. 53QCh. 20 - Prob. 54QCh. 20 - Prob. 55QCh. 20 - Prob. 56QCh. 20 - Prob. 57QCh. 20 - Prob. 58QCh. 20 - Prob. 59QCh. 20 - Prob. 60QCh. 20 - Prob. 61QCh. 20 - Prob. 62QCh. 20 - Prob. 63QCh. 20 - Prob. 64QCh. 20 - Prob. 65QCh. 20 - Prob. 66QCh. 20 - Prob. 67QCh. 20 - Prob. 68QCh. 20 - Prob. 69QCh. 20 - Prob. 70QCh. 20 - Prob. 71QCh. 20 - Prob. 72QCh. 20 - Prob. 73QCh. 20 - Prob. 74QCh. 20 - Prob. 75Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is a planetary nebula? Will we have one around the Sun?arrow_forwardA planetary nebula expanded in radius 0.3 arc seconds in 30 years. Doppler measurements show the nebula is expanding at a rate of 35 km/s. How far away is the nebula in parsecs? First, determine what distance the nebular expanded in parsecs during the time mentioned. Δd = vpc/sTs So we first need to convert the rate into pc/s and the time into seconds: vpc/s = vkm/s (1 pc / 3.09 x 1013km) vpc/s = ? Ts = (Tyr)(365 days/yr)(24 hrs/day)(3600 s/hr) Ts = ? s Δd= vpc/sTs Therefore, Δd = ? pcarrow_forwardIf our Sun were surrounded by a cloud of gas, would this cloud be an emission nebula? Why or why not?arrow_forward
- Pictures of various planetary nebulae show a variety of shapes, but astronomers believe a majority of planetary nebulae have the same basic shape. How can this paradox be explained?arrow_forwardWhy do nebulae near hot stars look red? Why do dust clouds near stars usually look blue?arrow_forwardIf the Orion Nebula is 8 pc in diameter and has a density of about 6.0 108 hydrogen atoms/m3, what is its total mass? (Notes: The volume of a sphere is 43r3; 1 pc = 3.1 1016 m; the mass of a hydrogen atom is 1.7 1027 kg.)arrow_forward
- The star cluster shown in this image contains a few red giants as well as main-sequence stars ranging from spectral type B to M. Discuss the likelihood that exoplanets orbiting any of these stars might be home to life. (Hint: Estimate the age of the cluster.)arrow_forwardHow are planetary nebulae comparable to a fluorescent light bulb in your classroom?arrow_forwardHow can the Crab Nebula shine with the energy of something like 100,000 Suns when the star that formed the nebula exploded almost 1000 years ago? Who “pays the bills” for much of the radiation we see coming from the nebula?arrow_forward
- In the text, we said that the five-times ionized oxygen (OVI) seen in hot gas must have been produced by supernova shocks that heated the gas to millions of degrees, and not by starlight, the way H II is produced. Producing OVI by light requires wavelengths shorter than 10.9 nm. The hottest observed stars have surface temperatures of about 50,000 K. Could they produce OVI?arrow_forwardWould you expect to observe every supernova in our own Galaxy? Why or why not?arrow_forwardSuppose that, instead of being inside the Local Bubble, the Sun were deep inside a giant molecular cloud. What would the night sky look like as seen from Earth at various wavelengths?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning