Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 9Q
Two cars emerge side by side from a tunnel. Car A is traveling with a speed of 60 km/h and has an acceleration of 40 km/h/min. Car В has a speed of 40 km/h and has an acceleration of 60 km/h/min. Which car is passing the other as they come out of the tunnel? Explain your reasoning.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are driving along Lawrence Ave. at 60 km/h. You see the traffic light ahead is still green and decide
to speed up to try to make it through the intersection before it turns red (poor decision!). Your car
accelerates at 1.3 m/s. You reach the light after accelerating for 4.3 seconds. What is your speed at
the light in m/s?
V =v, +aAt
A: Pictorial Representation
Sketch showing events, describe events, coordinate system, label givens & unknowns with symbols, conversions
B: Physics Representation
Motion diagram, motion graphs, velocity vectors, events
a
C: Word Representation
Describe motion (no numbers),-assumptions, estimated result (no calculation)
D: Mathematical Representation
Describe physics of steps, complete equations, algebraically isolate, substitutions with units, final statement of prediction
E: Evaluation
Answer has reasonable size, direction and units? Why?
Two cars emerge side by side from a tunnel. Car A is traveling with a speed of 60km/h and has an acceleration of 40 km/h/min. Car B has a speed of 40km/hand has an acceleration of 60km/h/min .Which car is passing the other as they come out of the tunnel? Explain your reasoning
Tired, you walk from your house to a local coffee shop to get an espresso. You average a speed of 2.4 m/s on your way there. After your espresso, you decide to run directly back to your starting point with an average speed of 5.6 m/s. Assume you spend 4 minutes at the coffee shop. If your average speed for this entire trip is 1.9 m/s, what is the distance between your house and the coffee shop?
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 2.1 - An ant starts at x = 20cm on a piece of graph...Ch. 2.2 - A car travels at a constant 50km/h for 100 km. It...Ch. 2.3 - What is your speed at the instant you turn around...Ch. 2.4 - A powerful car is advertised to go from zero to 60...Ch. 2.4 - A car moves along the x axis. What is the sign of...Ch. 2.4 - The position of a particle is given by the...Ch. 2.5 - A car starts from rest and accelerates at a...Ch. 2.7 - Return to the Chapter-Opening Question. page 18,...Ch. 2.7 - If a car is said to accelerate at 0.50 g, what is...Ch. 2.7 - Two balls are thrown from a cliff. One is thrown...
Ch. 2 - Does a car speedmeter measure speed, velocity, or...Ch. 2 - Can an object have a varying speed if its velocity...Ch. 2 - When an object moves with constant velocity, does...Ch. 2 - If one object has a greater speed than a second...Ch. 2 - Compare the acceleration of a motorcycle that...Ch. 2 - Can an object have a northward velocity and a...Ch. 2 - Can the velocity of an object be negative when its...Ch. 2 - Give an example where both the velocity and...Ch. 2 - Two cars emerge side by side from a tunnel. Car A...Ch. 2 - Can an object be increasing in speed as its...Ch. 2 - A baseball player hits a ball straight up into the...Ch. 2 - As a freely falling object speeds up, what is...Ch. 2 - You travel from point A to point B in a car moving...Ch. 2 - Can an object have zr velocity and nonzero...Ch. 2 - Can an object have zero acceleration and nonzero...Ch. 2 - Which of these motions is not at constant...Ch. 2 - In a lecture demonstration, a 3.0-m-long vertical...Ch. 2 - Describe in words the motion plotted in Fig. 236...Ch. 2 - Describe in words the motion of the object graphed...Ch. 2 - (I) If you are driving 110 km/h along a straight...Ch. 2 - What must your cars average speed be in order to...Ch. 2 - (I) A particle at t1 = 2.0 s is at x1 = 4.3 cm and...Ch. 2 - A rolling ball moves from x1 = 3.4 cm to x2 = 4.2...Ch. 2 - (II) According to a rule-of-thumb, every five...Ch. 2 - (II) You are driving home from school steadily at...Ch. 2 - (II) A horse canters away from its trainer in a...Ch. 2 - (II) T x = 34 + 10t 2t3, where t is in seconds...Ch. 2 - (II) The position of a rabbit along a straight...Ch. 2 - (II) On an audio compact disc (CD), digital bits...Ch. 2 - A car traveling 95 km/h is 110 m behind a truck...Ch. 2 - (II) Two locomotives approach each other on...Ch. 2 - (II) Digital bits on a 12.0-cm diameter audio CD...Ch. 2 - (II) An airplane travels 3100 km at a speed of 720...Ch. 2 - (II) Calculate the average speed and average...Ch. 2 - (II) The position of a ball rolling in a straight...Ch. 2 - (II) A dog runs 120m away from its master in a...Ch. 2 - (III) An automobile traveling 95 km/h overtakes a...Ch. 2 - (III) A bowling ball traveling with constant speed...Ch. 2 - (I) A sports car accelerates from rest to 95 km/h...Ch. 2 - (I) At highway speeds, a particular automobile is...Ch. 2 - (I) A sprinter accelerates from rest to 9.00m/s in...Ch. 2 - (I) Figure 2-37 shows the velocity of a train as a...Ch. 2 - (II) A sports car moving at constant speed travels...Ch. 2 - (II) A car moving in a straight line starts at x =...Ch. 2 - (II) A particular automobile can accelerate...Ch. 2 - (II) A particle moves along the x axis. Its...Ch. 2 - (II) The position of a racing car, which starts...Ch. 2 - (II) The position of an object is given by x = At...Ch. 2 - (I) A car slows down from 25 m/s to rest in a...Ch. 2 - (I) A car accelerates from 12 m/s to 21 m/s in 6.0...Ch. 2 - (I) A light plane must reach a speed of 32m/s for...Ch. 2 - (II) A baseball pitcher throws a baseball with a...Ch. 2 - (II) Show that =(+0)/2 (see Eq. 2-12d) is not...Ch. 2 - (II) A world-class sprinter can reach a top speed...Ch. 2 - (II) An inattentive driver is traveling 18.0 m/s...Ch. 2 - (II) A car slows down uniformly from a speed of...Ch. 2 - (II) In coming to a stop, a car leaves skid marks...Ch. 2 - (II) A car traveling 85 km/h slows down at a...Ch. 2 - (II) A car traveling at 105 km/h strikes a tree....Ch. 2 - (II) Determine the stopping distances for an...Ch. 2 - (II) A space vehicle accelerates uniformly from 65...Ch. 2 - (II) A 75-m-long train begins uniform acceleration...Ch. 2 - (II) An unmarked police car traveling a constant...Ch. 2 - (III) Assume in Problem 44 that the speeders speed...Ch. 2 - (III) A runner hopes to complete the 10,000-m run...Ch. 2 - (III) Mary and Sally are in a fool race (Fig....Ch. 2 - (I) A stone is dropped from the top of a cliff. It...Ch. 2 - (I) If a car rolls gently (v0 = 0) off a vertical...Ch. 2 - (I) Estimate (a) how long it took King kong to...Ch. 2 - (II) A baseball is hit almost straight up into the...Ch. 2 - (II) A ball player catches a ball 3.2 s after...Ch. 2 - (II) A kangaroo jumps to a vertical height of 1.65...Ch. 2 - (II) The best rebounders in basketball have a...Ch. 2 - (II) A helicopter is ascending vertically with a...Ch. 2 - (II) For an object falling freely from rest, show...Ch. 2 - (II) A baseball is seen to pass upward by a window...Ch. 2 - (II) A rocket rises vertically, from rest, with an...Ch. 2 - (II) Roger sees water balloons fall past his...Ch. 2 - (II) A stone is thrown vertically upward with a...Ch. 2 - (II) A falling stone takes 0.33 s to travel past a...Ch. 2 - (II) Suppose you adjust your garden hose nozzle...Ch. 2 - (III) A toy rocket moving vertically upward passes...Ch. 2 - (III) A ball is dropped from the top of a...Ch. 2 - (III) A rock is dropped from a sea cliff and the...Ch. 2 - (III) A rock is thrown vertically upward with a...Ch. 2 - (II) Given v(t) = 25 + 18t, where v is in m/s and...Ch. 2 - (III) The acceleration of a particle is given by...Ch. 2 - (III) Air resistance acting on a falling body can...Ch. 2 - A fugitive tries to hop on a freight train...Ch. 2 - The acceleration due to gravity on the Moon is...Ch. 2 - A person jumps from a fourth-story window 15.0 m...Ch. 2 - A person who is properly restrained by an...Ch. 2 - Pelicans tuck their wings and free-fall straight...Ch. 2 - Suppose a car manufacturer tested its cars for...Ch. 2 - A stone is dropped from the roof of a high...Ch. 2 - A bicyclist in the Tour de France crests a...Ch. 2 - Consider the street pattern shown in Fig. 247....Ch. 2 - In putting, the force with which a golfer strikes...Ch. 2 - A robot used in a pharmacy picks up a medicine...Ch. 2 - A stone is thrown vertically upward with a speed...Ch. 2 - Figure 250 is a position versus time graph for the...Ch. 2 - In the design of a rapid transit system, it is...Ch. 2 - A person jumps off a diving board 4.0 m above the...Ch. 2 - Bill can throw a ball vertically at a speed 1.5...Ch. 2 - Sketch the v vs. t graph for the object whose...Ch. 2 - A person driving her car at 45 km/h approaches an...Ch. 2 - A car is behind a truck going 25 m/s on the...Ch. 2 - Agent Bond is standing on a bridge, 13m above the...Ch. 2 - A police car at rest, passed by a speeder...Ch. 2 - A fast-food restaurant uses a conveyor belt to...Ch. 2 - Two students are asked to find the height of a...Ch. 2 - Figure 252 shows the position vs. time graph for...Ch. 2 - You are traveling at a constant speed vM, and...Ch. 2 - (III) A lifeguard standing at the side of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
To measure the heat capacity of an object, all you usually have to do is put it in thermal contact with another...
An Introduction to Thermal Physics
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
Earth is closer to the Sun in January than in July. Therefore, in accord with Kepler’s second law, (a) Earth tr...
Life in the Universe (4th Edition)
1. How many significant figures does each of the following numbers have?
a. 0.73 b. 7.30 c. 73 d. 0.073
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Car A is heading east at 30 m/s and Car B is heading west at 22 m/s. Suddenly, as they approach each other, they see a one-way bridge ahead. They are 100 m apart when they each apply the brakes. Car A's speed decreases at 9.0 m/s each second and Car B decreases at 7.0 m/s each second. Part A Determine the braking distance of the car A. Express your answer with appropriate units. HA ZA = Value Units Submit Previous Answers Request Answer X Incorrect; Try Again; 9 attempts remaining Part B Determine the braking distance of the car B. Express your answer with appropriate units. HA Value Units IB = Submit Previous Answers Request Answerarrow_forwardA girl is standing at the edge of a cliff 100. m above the ground. She reaches out over the edge of the cliff and throws a rock straight upward with a speed 8.00 m/s. a) How long does it take the rock to hit the ground? b) What is the speed of the rock the instant before it hits the ground? Please type answerarrow_forwardHow do I solve part b?arrow_forward
- Please answer this, I need help.arrow_forwardYou decide to drop a water balloon on a friend as a horribly inconsiderate prank that they shall never forgive you for. You climb onto an overpass near their favorite bike trail and release the balloon from rest some 7.7 m above the ground. If your friend is riding their bike at 11.4 m/s, how far out must they be from the overpass when you drop it? Assume your result is in m. DO NOT include units with your numerical answer.arrow_forwardYou are driving your car, and the traffic light ahead turns red. You apply the brakes for 2.56 s, and the velocity of the car decreases to +4.84 m/s. The car’s deceleration has a magnitude of 3.67 m/s2 during this time. What is the car’s displacement?arrow_forward
- A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 6.00 mm to the bottom of the incline is 3.80 m/sm/s. A). What is the speed of the block when it is 4.60 mm from the top of the incline? Express your answer with the appropriate units.arrow_forwardCompute your Average velocity in the following two cases: (a) You walk 61.4 m at a speed of 2.47 m/s and then run 61.4 m at a speed of 3.34 m/s along a straight track. (B) You walk for 1 minute at a speed of 2.47 m/s and then run for 1.8 minutes at 3.34 m/s along a straight trackarrow_forwardYou and your family are going on a road trip to visit your recently married cousin in B.C. The total round trip distance is 2100 km. On the way to B.C., you encounter no setbacks and you are able to drive on average at a constant speed. On the way home from B.C., you encounter a snowstorm and your mom has to slow down to avoid getting into an accident. Thus, your average speed decreases by 10 km/h. If the total driving time was 42 hours, what was your average speed on the way to B.C.? Recall distance = speed x time.arrow_forward
- I need help with this problem A student in Physics 211 decides to do an experiment. They travel to a city and climb to the roof of a building that is 3.0 x 102 m tall. Then, at the same instant, they drop one rock while a second rock is thrown downward with an initial speed of 16 m/s. Assume both rocks experience negligible air resistance while falling. How much EARLIER does the thrown rock strike the ground? A) 1.1 s B) 1.5 s C) 1.4 s D) they land exactly at the same timearrow_forwardAn airplane is initially traveling with a velocity of 55.0 m/s due east when a gust of wind causes the airplane to have an acceleration of 40.0 m/s² due north. What is the airplane's new total speed after 6.0 s? [Hint: Draw a picture.] O 174.6 m/s O 55.0 m/s O 184.4 m/s O 262.5 m/s O 246.2 m/sarrow_forwardA student begins at rest and then walks north at a speed of v1 = 0.55 m/s. The student then turns south and walks at a speed of v2 = 0.53 m/s. Take north to be the positive direction. If the student travels in the stated directions for 30.0 seconds at speed v1 and for 20.0 seconds at speed v2, what is the net displacement, in meters, during the trip? If it takes the student 5.0 s to reach the speed v1 from rest, what is the magnitude of the student’s average acceleration, in meters per second squared, during that time?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY