Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 33P
(II) A baseball pitcher throws a baseball with a speed of 41 m/s. Estimate the average acceleration of the ball during the throwing motion. In throwing the baseball, the pitcher accelerates the ball through a displacement of about 3.5 m. from behind the body to the point where it is released (Fig. 2–41).
FIGURE 2-41 Problem 33.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(III) Sketch the v vs. t graph for the object whose displacement as a function of time is given by Fig. 2–44
(II) In Fig. 2–44, (a) during what time periods, if any, is the velocity constant? (b) At what time is the velocity greatest? (c) At what time, if any, is the velocity zero? (d) Does the object move in one direction or in both directions during the time shown?
(III) A stone is thrown vertically upward with a speed of
12.0 m/s from the edge of a cliff 70.0 m high (Fig. 2-34).
(a) How much later does it
reach the bottom of the cliff?
(b) What is its speed just
before hitting? (c) What total
distance did it travel?
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 2.1 - An ant starts at x = 20cm on a piece of graph...Ch. 2.2 - A car travels at a constant 50km/h for 100 km. It...Ch. 2.3 - What is your speed at the instant you turn around...Ch. 2.4 - A powerful car is advertised to go from zero to 60...Ch. 2.4 - A car moves along the x axis. What is the sign of...Ch. 2.4 - The position of a particle is given by the...Ch. 2.5 - A car starts from rest and accelerates at a...Ch. 2.7 - Return to the Chapter-Opening Question. page 18,...Ch. 2.7 - If a car is said to accelerate at 0.50 g, what is...Ch. 2.7 - Two balls are thrown from a cliff. One is thrown...
Ch. 2 - Does a car speedmeter measure speed, velocity, or...Ch. 2 - Can an object have a varying speed if its velocity...Ch. 2 - When an object moves with constant velocity, does...Ch. 2 - If one object has a greater speed than a second...Ch. 2 - Compare the acceleration of a motorcycle that...Ch. 2 - Can an object have a northward velocity and a...Ch. 2 - Can the velocity of an object be negative when its...Ch. 2 - Give an example where both the velocity and...Ch. 2 - Two cars emerge side by side from a tunnel. Car A...Ch. 2 - Can an object be increasing in speed as its...Ch. 2 - A baseball player hits a ball straight up into the...Ch. 2 - As a freely falling object speeds up, what is...Ch. 2 - You travel from point A to point B in a car moving...Ch. 2 - Can an object have zr velocity and nonzero...Ch. 2 - Can an object have zero acceleration and nonzero...Ch. 2 - Which of these motions is not at constant...Ch. 2 - In a lecture demonstration, a 3.0-m-long vertical...Ch. 2 - Describe in words the motion plotted in Fig. 236...Ch. 2 - Describe in words the motion of the object graphed...Ch. 2 - (I) If you are driving 110 km/h along a straight...Ch. 2 - What must your cars average speed be in order to...Ch. 2 - (I) A particle at t1 = 2.0 s is at x1 = 4.3 cm and...Ch. 2 - A rolling ball moves from x1 = 3.4 cm to x2 = 4.2...Ch. 2 - (II) According to a rule-of-thumb, every five...Ch. 2 - (II) You are driving home from school steadily at...Ch. 2 - (II) A horse canters away from its trainer in a...Ch. 2 - (II) T x = 34 + 10t 2t3, where t is in seconds...Ch. 2 - (II) The position of a rabbit along a straight...Ch. 2 - (II) On an audio compact disc (CD), digital bits...Ch. 2 - A car traveling 95 km/h is 110 m behind a truck...Ch. 2 - (II) Two locomotives approach each other on...Ch. 2 - (II) Digital bits on a 12.0-cm diameter audio CD...Ch. 2 - (II) An airplane travels 3100 km at a speed of 720...Ch. 2 - (II) Calculate the average speed and average...Ch. 2 - (II) The position of a ball rolling in a straight...Ch. 2 - (II) A dog runs 120m away from its master in a...Ch. 2 - (III) An automobile traveling 95 km/h overtakes a...Ch. 2 - (III) A bowling ball traveling with constant speed...Ch. 2 - (I) A sports car accelerates from rest to 95 km/h...Ch. 2 - (I) At highway speeds, a particular automobile is...Ch. 2 - (I) A sprinter accelerates from rest to 9.00m/s in...Ch. 2 - (I) Figure 2-37 shows the velocity of a train as a...Ch. 2 - (II) A sports car moving at constant speed travels...Ch. 2 - (II) A car moving in a straight line starts at x =...Ch. 2 - (II) A particular automobile can accelerate...Ch. 2 - (II) A particle moves along the x axis. Its...Ch. 2 - (II) The position of a racing car, which starts...Ch. 2 - (II) The position of an object is given by x = At...Ch. 2 - (I) A car slows down from 25 m/s to rest in a...Ch. 2 - (I) A car accelerates from 12 m/s to 21 m/s in 6.0...Ch. 2 - (I) A light plane must reach a speed of 32m/s for...Ch. 2 - (II) A baseball pitcher throws a baseball with a...Ch. 2 - (II) Show that =(+0)/2 (see Eq. 2-12d) is not...Ch. 2 - (II) A world-class sprinter can reach a top speed...Ch. 2 - (II) An inattentive driver is traveling 18.0 m/s...Ch. 2 - (II) A car slows down uniformly from a speed of...Ch. 2 - (II) In coming to a stop, a car leaves skid marks...Ch. 2 - (II) A car traveling 85 km/h slows down at a...Ch. 2 - (II) A car traveling at 105 km/h strikes a tree....Ch. 2 - (II) Determine the stopping distances for an...Ch. 2 - (II) A space vehicle accelerates uniformly from 65...Ch. 2 - (II) A 75-m-long train begins uniform acceleration...Ch. 2 - (II) An unmarked police car traveling a constant...Ch. 2 - (III) Assume in Problem 44 that the speeders speed...Ch. 2 - (III) A runner hopes to complete the 10,000-m run...Ch. 2 - (III) Mary and Sally are in a fool race (Fig....Ch. 2 - (I) A stone is dropped from the top of a cliff. It...Ch. 2 - (I) If a car rolls gently (v0 = 0) off a vertical...Ch. 2 - (I) Estimate (a) how long it took King kong to...Ch. 2 - (II) A baseball is hit almost straight up into the...Ch. 2 - (II) A ball player catches a ball 3.2 s after...Ch. 2 - (II) A kangaroo jumps to a vertical height of 1.65...Ch. 2 - (II) The best rebounders in basketball have a...Ch. 2 - (II) A helicopter is ascending vertically with a...Ch. 2 - (II) For an object falling freely from rest, show...Ch. 2 - (II) A baseball is seen to pass upward by a window...Ch. 2 - (II) A rocket rises vertically, from rest, with an...Ch. 2 - (II) Roger sees water balloons fall past his...Ch. 2 - (II) A stone is thrown vertically upward with a...Ch. 2 - (II) A falling stone takes 0.33 s to travel past a...Ch. 2 - (II) Suppose you adjust your garden hose nozzle...Ch. 2 - (III) A toy rocket moving vertically upward passes...Ch. 2 - (III) A ball is dropped from the top of a...Ch. 2 - (III) A rock is dropped from a sea cliff and the...Ch. 2 - (III) A rock is thrown vertically upward with a...Ch. 2 - (II) Given v(t) = 25 + 18t, where v is in m/s and...Ch. 2 - (III) The acceleration of a particle is given by...Ch. 2 - (III) Air resistance acting on a falling body can...Ch. 2 - A fugitive tries to hop on a freight train...Ch. 2 - The acceleration due to gravity on the Moon is...Ch. 2 - A person jumps from a fourth-story window 15.0 m...Ch. 2 - A person who is properly restrained by an...Ch. 2 - Pelicans tuck their wings and free-fall straight...Ch. 2 - Suppose a car manufacturer tested its cars for...Ch. 2 - A stone is dropped from the roof of a high...Ch. 2 - A bicyclist in the Tour de France crests a...Ch. 2 - Consider the street pattern shown in Fig. 247....Ch. 2 - In putting, the force with which a golfer strikes...Ch. 2 - A robot used in a pharmacy picks up a medicine...Ch. 2 - A stone is thrown vertically upward with a speed...Ch. 2 - Figure 250 is a position versus time graph for the...Ch. 2 - In the design of a rapid transit system, it is...Ch. 2 - A person jumps off a diving board 4.0 m above the...Ch. 2 - Bill can throw a ball vertically at a speed 1.5...Ch. 2 - Sketch the v vs. t graph for the object whose...Ch. 2 - A person driving her car at 45 km/h approaches an...Ch. 2 - A car is behind a truck going 25 m/s on the...Ch. 2 - Agent Bond is standing on a bridge, 13m above the...Ch. 2 - A police car at rest, passed by a speeder...Ch. 2 - A fast-food restaurant uses a conveyor belt to...Ch. 2 - Two students are asked to find the height of a...Ch. 2 - Figure 252 shows the position vs. time graph for...Ch. 2 - You are traveling at a constant speed vM, and...Ch. 2 - (III) A lifeguard standing at the side of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
At temperatures of a few hundred kelvins the specific heat capacity of copper approximately follows the empiric...
University Physics Volume 2
Integrated Concepts Use the ECG in Figure 20.34 to determine the heart rate in beats per minute assuming a cons...
College Physics
A friend says, “It makes no sense that Anna could turn on lights in her hands simultaneously in her frame but t...
Modern Physics
4. A construction crew would like to support a 1000 kg steel beam with two angled ropes as shown in Figure P5.4...
College Physics: A Strategic Approach (4th Edition)
In this chapter, we learned that the cause of acceleration is given by Newtons second law:a=Fm/m. Show that the...
Conceptual Integrated Science
26. A 10 kg crate is placed on a horizontal conveyor belt. The materials are such that and .
a. Draw a free-...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A stone is thrown vertically upward with a speed of 15.5 m/s from the edge of a cliff 75.0 m high (Fig. 2–48). (a) How much later does it reach the bottom of the cliff? (b) What is its speed just before hitting? (c) What total distance -y = 0 did it travel? FIGURE 2-48 Ey= -75 m Problem 71.arrow_forward(II) A sports car accelerates approximately as shown in the velocity-time graph of Fig. 2–43. (The short flat spots in the curve represent manual shifting of the gears.) Estimate the car's average acceleration in (a) second gear and (b) fourth gear. 50 5th gear 4th gear 40 3rd gear 30 20 2nd gear 10 1st gear t (s) 0. 10 20 30 40 FIGURE 2–43 Problem 56. The velocity of a car as a function of time, starting from a dead stop. The flat spots in the curve represent gear shifts. (s/u)aarrow_forward(I) A particle at is at and at t1=-2.0 s is at x1=4.8cm and at t2=4.5 s is at x2 = 8.5 cm. What is its average velocity over this time interval? Can you calculate its average speed from these data?Why or why not?arrow_forward
- A person driving her car at 35 km/h approaches an inter- section just as the traffic light turns yellow. She knows that the yellow light lasts only 2.0s before turning to red, and she is 28 m away from the near side of the intersection (Fig. 2–49). Should she try to stop, or should she speed up to cross the intersection before the light turns red? The intersection is 15 m wide. Her car's maximum deceleration is -5.8 m/s?, whereas it can accelerate from 45 km/h to 65 km/h in 6.0 s. Ignore the length of her car and her reaction time. – 28 m - -15 m→ FIGURE 2-49 Problem 73.arrow_forward(III) A fugitive tries to hop on a freight train traveling at a constant speed of 5.00 m/s Just as an empty box car passes him, the fugitive starts from rest and accelerates at a= 1.4 m/s2 to his maximum speed of 6.0 m/s which he then maintains. (a) How long does it take him to catch up to the empty box car? (b) What is the distance traveled to reach the box car?arrow_forward(II) Roger sees water balloons fall past his window. He notices that each balloon strikes the sidewalk 0.83 s after passing his window. Roger’s room is on the third floor, 15 m above the sidewalk. (a) How fast are the balloons traveling when they pass Roger’s window? (b) Assuming the balloons are being released from rest, from what floor are they being released? Each floor of the dorm is 5.0 m high.arrow_forward
- (III) An unmarked police car traveling a constant 95km/h is passed by a speeder traveling 135km/h Precisely 1.00 s after the speeder passes, the police officer steps on the accelerator; if the police car’s acceleration is 2.60m/s2 how much time passes before the police car overtakes thespeeder (assumed moving at constant speed)?arrow_forward33. (II) A 75-m-long train begins uniform acceleration from rest. The front of the train has a speed of 18 m/s when it passes a railway worker who is standing 180 m from where the front of the train started. What will be the speed of the last car as it passes the worker? (See Fig. 2–38.) -75 m- v = 18 m/s FIGURE 2–38 Problem 33.arrow_forwardIn putting, the force with which a golfer strikes a ball is planned so that the ball will stop within some small distance of the cup, say 1.0m long or short, in case the putt is missed. Accomplishing this from an uphill lie (that is, putting the ball downhill, see Fig. 2–47) is more difficult than from a downhill lie. To see why, assume that on a particular green the ball decelerates constantly at 1.8 m/s² going downhill, and constantly at 2.6 m/s² going uphill. Suppose we have an uphill lie 7.0 m from the cup. Calculate the allowable range of initial velocities we may impart to the ball so that it stops in the range 1.0 m short to 1.0 m long of the cup. Do the same for a downhill lie 7.0 m from the cup. What in your results suggests that the downhill putt is more difficult? Uphill lie Downhill 7.0 m lie - 7.0 m FIGURE 2-47 Problem 70.arrow_forward
- (II) At highway speeds, a particular automobile is capable of an acceleration of 1.8m/s2 about At this rate, how long does it take to accelerate from 65km/h to 120km/h ?arrow_forward65. Consider the street pattern shown in Fig. 2–46. Each inter- section has a traffic signal, and the speed limit is 40 km/h. Suppose you are driving from the west at the speed limit. When you are 10.0 m from the first intersection, all the lights turn green. The lights are green for 13.0 s each. (a) Calculate the time needed to reach the third stoplight. Can you make it through all three lights without stopping? (b) Another car was stopped at the first light when all the lights turned green. It can accelerate at the rate of 2.00 m/s² to the speed limit. Can the second car make it through all three lights without stopping? By how many seconds would it make it, or not make it? West O East 0000 Speed limit 40 km/h Your 10 m 50 m 70 m car 15 m 15 m 15 m FIGURE 2-46 Problem 65.arrow_forward(b) The speed of a train is reduced uniformly from 20 km/h to 10 km/h while travelling a distance of 80 m. (1) (ii) E (iv) Calculate the deceleration of the train. Assuming that the deceleration is constant, how much further will the train travel before coming to rest? Determine the total time taken for the train to come to rest from a speed of 20 km/h. Sketch the velocity versus time graph for the motion of the train.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY