College Physics
College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 58PE

A soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts ( 3.50 × 10 3 s ) . (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?

Blurred answer
Students have asked these similar questions
To Merge into the highway you need to increase your speed from 50 km/h to 100 km/h. If your car can accelerate at 8.0 m/s², what should the minimum length of the ramp be? (report your answer in meters) Your Answer: Answer
Suppose you throw an object from a great height, so that it reaches very nearly terminal velocity by time it hits the ground. By measuring the impact, you determine that this terminal velocity is -49 mi sec.A. Write the equation representing the velocity v(t) of the object at time t seconds given the initial velocity v0 and the fact that acceleration due to gravity 9.8 m/sec2. (Here, assume you're modeling the falling body with the differential equation dy/dt = g-kv, and use the resulting formula or v(t) found in the Tutorial. Of course, you can derive it if you'd like.)B. Determine the value of k, the "continuous percentage growth rate" from the velocity equation, by utilizing the information given concerning the terminal velocity.C. Using the value of k you derived above, at what velocity must the object be thrown upward if you want it to reach its peak height after 3 sec? Approximate your solution to three decimal places, and justify your answer.
A basketball player jumps straight up for a ball. To do this, he lowers his body 0.310 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.940 m above the floor. (a) Calculate his velocity (in m/s) when he leaves the floor. (Enter a number.) m/s (b) Calculate his acceleration (in m/s²) while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.310 m. (Enter a number.) m/s² (c) Calculate the force (in N) he exerts on the floor to do this, given that his mass is 104 kg. (Enter a number.) N

Chapter 2 Solutions

College Physics

Ch. 2 - If you divide the total distance traveled on a car...Ch. 2 - How are instantaneous velocity and instantaneous...Ch. 2 - Is it possible for speed to be constant while...Ch. 2 - Is it possible for velocity to be constant while...Ch. 2 - Give an example in which velocity is zero yet...Ch. 2 - If a subway train is moving to the left (has a...Ch. 2 - Plus and minus signs are used in one-dimensional...Ch. 2 - What information do you need in order to choose...Ch. 2 - What is the last thing you should do when solving...Ch. 2 - What is the acceleration of a rock thrown straight...Ch. 2 - An object that is thrown straight up falls back to...Ch. 2 - Suppose you throw a rock nearly straight up at a...Ch. 2 - If an object is thrown straight up and air...Ch. 2 - The severity of a fall depends on your speed when...Ch. 2 - How many times higher could an astronaut jump on...Ch. 2 - (a) Explain how you can use the graph of position...Ch. 2 - (a) Sketch a graph of velocity versus time...Ch. 2 - (a) Explain how you can determine the acceleration...Ch. 2 - (a) Sketch a graph of acceleration versus time...Ch. 2 - Consider the velocity vs. time graph of a person...Ch. 2 - A cylinder is given a push and then rolls up an...Ch. 2 - Find the following for path A in Figure 2.59: (a)...Ch. 2 - Find the following for path B in Figure 2.59: (a)...Ch. 2 - Find the following for path C in Figure 2.59: (a)...Ch. 2 - Find the following for path D in Figure 2.59: (a)...Ch. 2 - (a) Calculate Earth's average speed relative to...Ch. 2 - A helicopter blade spins at exactly 100...Ch. 2 - The North American and European continents are...Ch. 2 - Land west of the San Andreas fault in southern...Ch. 2 - On May 26, 1934, a streamlined, stainless steel...Ch. 2 - Tidal friction is slowing the rotation of the...Ch. 2 - A student drove to the university from her home...Ch. 2 - The speed of propagation of the action potential...Ch. 2 - Conversations with astronauts on the lunar surface...Ch. 2 - A football quarterback runs 15.0 m straight down...Ch. 2 - The planetary model of the atom pictures electrons...Ch. 2 - A cheetah can accelerate from rest to a speed of...Ch. 2 - Professional Application Dr. John Paul Stapp was...Ch. 2 - A commuter backs her car out of her garage with an...Ch. 2 - Assume that an intercontinental ballistic missile...Ch. 2 - An Olympic-class sprinter starts a race with an...Ch. 2 - A well-thrown ball is caught in a well-padded...Ch. 2 - A bullet in a gun is accelerated from the firing...Ch. 2 - (a) A light-rail commuter train accelerates at a...Ch. 2 - While entering a freeway, a car accelerates from...Ch. 2 - At the end of a race, a runner decelerates from a...Ch. 2 - Professional Application: Blood is accelerated...Ch. 2 - In a slap shot, a hockey player accelerates the...Ch. 2 - A powerful motorcycle can accelerate from rest to...Ch. 2 - Freight trains can produce only relatively small...Ch. 2 - A fireworks shell is accelerated from rest to a...Ch. 2 - A swan on a lake gets airborne by flapping its...Ch. 2 - Professional Application: A woodpecker's brain is...Ch. 2 - An unwary football player collides with a padded...Ch. 2 - In World War II, there were several reported cases...Ch. 2 - Consider a grey squirrel falling out of a tree to...Ch. 2 - An express train passes through a station. It...Ch. 2 - Dragsters can actually reach a top speed of 145...Ch. 2 - A bicycle racer sprints at the end of a race to...Ch. 2 - In 1967, New Zealander Burt Munro set the world...Ch. 2 - (a) A world record was set for the men's 100-m...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - A basketball referee tosses the ball straight up...Ch. 2 - A rescue helicopter is hovering over a person...Ch. 2 - A dolphin in an aquatic show jumps straight up out...Ch. 2 - A swimmer bounces straight up from a diving board...Ch. 2 - (a) Calculate the height of a cliff if it takes...Ch. 2 - A very strong, but inept, shot putter puts the...Ch. 2 - You throw a ball straight up with an initial...Ch. 2 - A kangaroo can jump over an object 2.50 m high....Ch. 2 - Standing at the base of one of the cliffs of Mt....Ch. 2 - An object is dropped from a height of 75.0 m above...Ch. 2 - There is a 250-m-high cliff at Half Dome in...Ch. 2 - A ball is thrown straight up. It passes a...Ch. 2 - Suppose you drop a rock into a dark well and,...Ch. 2 - A steel ball is dropped onto a hard floor from a...Ch. 2 - A coin is dropped from a hot-air balloon that is...Ch. 2 - A soft tennis ball is dropped onto a hard floor...Ch. 2 - (a) By taking the slope of the curve in Figure...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - Using approximate values, calculate the slope of...Ch. 2 - By taking the slope of the curve in Figure 2.63,...Ch. 2 - Construct the displacement graph for the subway...Ch. 2 - (a) Take the slope of the curve in Figure 2.64 to...Ch. 2 - A graph of v(t) is shown for a world-class track...Ch. 2 - Figure 2.68 shows the displacement graph for a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY