Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 48P
An object’s position as a function of time t is given by x = bt4, with b a constant. Find an expression for the instantaneous velocity, and show that the average velocity over the interval from t = 0 to any time t is one-fourth of the instantaneous velocity at t.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle moves along the x axis according to the equation x = 1.92 + 3.03t – 1.00t, where x is in meters and t is in seconds.
(a) Find the position of the particle at t = 3.10 s.
m
(b) Find its velocity at t = 3.10 s.
The instantaneous velocity at a particular time can be obtained by taking the time derivative of the position versus time function and then putting in the specific value of t. m/s
(c) Find its acceleration at t = 3.10 s.
The instantaneous acceleration at a particular time can be obtained by taking the second time derivative of the position versus time function and then putting in the specific value of t. m/s
Need Help?
Read It
Master It
The velocity of a particle which moves along the a linear reference axis is given by v = 2—4t— 6t3, t is in seconds while v is in meters per second. Evaluate the position, velocity, and acceleration when t = 3 seconds. Assume your own initial position and initial point in time. Further, set a variable for position as you see fit. Show COMPLETE STEP BY STEP SOLUTION and necessary FIGURES.
A particle's position is given by x = 7 - 14t + 2t2 (where t is in seconds and x is in meters).
(a) What is its velocity at t = 1 s? (Indicate the direction with the sign of your answer.)
X
The velocity function is the time derivative of the position function. The sign of the velocity vector gives the
direction of travel on the x axis. The particle stops when the velocity is zero. m/s
(b) Is it moving in the positive or negative direction of x just then?
O positive
neither
O negative
(c) What is its speed just then?
X m/s
(d) Is the speed increasing or decreasing just then?
O increasing
O decreasing
O neither
X
(Try answering the next two questions without further calculation.)
(e) Is there ever an instant when the velocity is zero? If so, give the time t; if not, enter NONE.
x
The velocity function is the time derivative of the position function. The sign of the velocity vector gives the
direction of travel on the x axis. The particle stops when the velocity is zero. s
(f) Is there a…
Chapter 2 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 2.1 - We just described three trips from Houston to Des...Ch. 2.2 - The figures show position-versus-time graphs for...Ch. 2.3 - An elevator is going up at constant speed, slows...Ch. 2.5 - Standing on a roof, you simultaneously throw one...Ch. 2.6 - The graph shows acceleration versus time for three...Ch. 2 - Under what conditions are average and...Ch. 2 - Does a speedometer measure speed or velocity?Ch. 2 - You check your odometer at the beginning of a days...Ch. 2 - Consider two possible definitions of average...Ch. 2 - Is it possible to be at position x = 0 and still...
Ch. 2 - Is it possible to have zero velocity and still be...Ch. 2 - If you know the initial velocity v0 and the...Ch. 2 - Starting from rest, an object undergoes...Ch. 2 - In which of the velocity-versus-time graphs shown...Ch. 2 - If you travel in a straight line at 50 km/h for 1...Ch. 2 - If you travel in a straight line at 50 km/h for 50...Ch. 2 - In 2009, Usain Bolt of Jamaica set a world record...Ch. 2 - The standard 26-mile, 385-yard marathon dates to...Ch. 2 - Starting front home, you bicycle 24 km north in...Ch. 2 - The Voyager 1 spacecraft is expected to continue...Ch. 2 - In 2008, Australian Emma Snowsill set an...Ch. 2 - Taking Earths orbit to be a circle of radius 1.5 ...Ch. 2 - Whats the conversion factor from meters per second...Ch. 2 - On a single graph, plot distance versus time for...Ch. 2 - For the motion plotted in Fig. 2.15, estimate (a)...Ch. 2 - A model rocket is launched straight upward. Its...Ch. 2 - A giant eruption on the Sun propels solar material...Ch. 2 - Starting from rest, a subway train first...Ch. 2 - A space shuttles main engines cut off 8.5 min...Ch. 2 - An egg drops from a second-story window, taking...Ch. 2 - An airplanes takeoff speed is 320 km/h. If its...Ch. 2 - ThrustSSC, the worlds first supersonic car,...Ch. 2 - Youre driving at 70 km/h when you apply constant...Ch. 2 - Prob. 29ECh. 2 - An X-ray tube gives electrons constant...Ch. 2 - A rocket rises with constant acceleration to an...Ch. 2 - Starting from rest, a car accelerates at a...Ch. 2 - A car moving initially at 50 mi/h begins slowing...Ch. 2 - In a medical X-ray tube, electrons are accelerated...Ch. 2 - Californias Bay Area Rapid Transit System (BART)...Ch. 2 - Youre driving at speed v0 when you spot a...Ch. 2 - You drop a rock into a deep well and 4.4 s later...Ch. 2 - Your friend is sitting 6.5 m above you on a tree...Ch. 2 - A model rocket leaves the ground, heading straight...Ch. 2 - A foul ball leaves the bat going straight up at 23...Ch. 2 - A Frisbee is lodged in a tree 6.5 m above the...Ch. 2 - Space pirates kidnap an earthling and hold him on...Ch. 2 - You allow 40 min to drive 25 mi to the airport,...Ch. 2 - A base runner can get from first to second base in...Ch. 2 - You can run 9.0 m/s, 20% faster than your brother....Ch. 2 - A jetliner leaves San Francisco for New York, 4600...Ch. 2 - An objects position is given by x = bt + ct3 where...Ch. 2 - An objects position as a function of time t is...Ch. 2 - In a drag race, the position of a car as a...Ch. 2 - Squaring Equation 2.7 gives an expression for v2....Ch. 2 - During the complicated sequence that landed the...Ch. 2 - The position of a car in a drag race is measured...Ch. 2 - A fireworks rocket explodes at a height of 82.0 m,...Ch. 2 - The muscles in a grasshoppers legs can propel the...Ch. 2 - On packed snow, computerized antilock brakes can...Ch. 2 - A particle leaves its initial position x0 at time...Ch. 2 - A hockey puck moving at 32 m/s slams through a...Ch. 2 - Amtraks 20th-Century Limited is en route from...Ch. 2 - A jetliner touches down at 220 km/h and comes to a...Ch. 2 - A motorist suddenly notices a stalled car and...Ch. 2 - A racing car undergoing constant acceleration...Ch. 2 - The maximum braking acceleration of a car on a dry...Ch. 2 - After 35 min of running, at the 9-km point in a...Ch. 2 - Youre speeding at 85 km/h when you notice that...Ch. 2 - Airbags cushioned the Mars rover Spirits landing,...Ch. 2 - Calculate the speed with which cesium atoms must...Ch. 2 - A falling object travels one-fourth of its total...Ch. 2 - Youre on a NASA team engineering a probe to land...Ch. 2 - Youre atop a building of height h, and a friend is...Ch. 2 - A castles defenders throw rocks down on their...Ch. 2 - Two divers jump from a 3.00-m platform. One jumps...Ch. 2 - A balloon is rising at 10 m/s when its passenger...Ch. 2 - Landing on the Moon, a spacecraft fires its...Ch. 2 - Youre at mission control for a rocket launch,...Ch. 2 - Youre an investigator for the National...Ch. 2 - You toss a book into your dorm room, just clearing...Ch. 2 - Consider an object traversing a distance L, part...Ch. 2 - A particles position as a function of time is...Ch. 2 - Ice skaters, ballet dancers, and basketball...Ch. 2 - Youre staring idly out your dorm window when you...Ch. 2 - A police radars effective range is 1.0 km, and...Ch. 2 - An object starts moving in a straight line from...Ch. 2 - Youre a consultant on a movie set, and the...Ch. 2 - (a) For the ball in Example 2.6, find its velocity...Ch. 2 - Your roommate is an aspiring novelist and asks...Ch. 2 - You and your roommate plot to drop water balloons...Ch. 2 - Derive Equation 2.10 by integrating Equation 2.7...Ch. 2 - An objects acceleration increases quadratically...Ch. 2 - An objects acceleration is given by the expression...Ch. 2 - An objects acceleration decreases exponentially...Ch. 2 - A ball is dropped from rest at a height li0 above...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Low-pressure centers are also referred to as ______, while high-pressure centers are called ______.
Applications and Investigations in Earth Science (9th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
List all the different gametes that are possible from the following genotypes. a. AABbCcDd b. AabbCcDD c. AaBbC...
Genetic Analysis: An Integrated Approach (3rd Edition)
Pus is both a sign of infection and an indicator of immune defenses in action. Explain.
Campbell Biology (11th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
What global policy changes and what individual choices can help us sustain the planet that sustains us?
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The acceleration function (in m/s2) and the initial velocity are given for a particle moving along a line.Constants b and c are positive. a(t) = bt + c, and initial velocity v(0)> 0 ; where 0 ≤ t ≤ x (a) Find the velocity at time t.v(t) = m/s(b) Find the distance traveled during the given time interval.distance (t) = marrow_forwardSuppose an object starts at time t=0 at a position defined as x=0 m. At t =.5 s the object is at x=1.5 m. At t =1 s the object is at 2.0 m. What is the average velocity for the first interval (approximated at t=.25 s) and the second interval (approximated at t=.75 s)? I'm mainly confused about what is meant by approximated at t=.25 and t=.75?arrow_forwardThe velocity of a particle is given by v = 23t2 - 110t + 52, where v is in meters per second and t is in seconds. Plot the velocity v and acceleration a versus time for the first 6.4 seconds of motion and evaluate the velocity when a is zero. Make the plots and then answer the questions. Questions: When t = 0.8 s, V = i m/s, a = i m/s2 When t = 3.7 s, V = i m/s, a = i m/s? When t = 4.7 s, V = i m/s, a = i m/s? When a = 0, V = m/sarrow_forward
- An object moves in one dimensional motion with constant acceleration a = 4.5 m/s². At time t = 0 s, the object is at xo = 2.9 m and has an initial velocity of vo = 4 m/s. How far will the object move before it achieves a velocity of v = 7 m/s? Your answer should be accurate to the nearest 0.1 m.arrow_forwardA particle moving along a straight line decelerates according to a = -kv, where k is a constant and v is velocity. If it's initial velocity at time t = 0 is vo=4m/s and its velocity at time t = 2s is v = 1m/s, determine the time t and corresponding distance s for the particle speed to be reduced to one tenth of its initial valuearrow_forwardA particle starts moving with the initial velocity v(0) = 1 and accelerates as a(t) = sin t + t for t > 0. (a) Find the velocity function for the particle. (b) What would be its velocity at time t = 5?arrow_forward
- An object accelerating at constant acceleration (a) has an initial velocity v0 (at t=0), a velocity v at time t, and goes a particular distance d or x - x0 during the time interval. Derive the expression relating v0, v, a, and d (or x-x0). The relation must not include time. You may use either algebra or calculus.arrow_forwardA particle moves in one dimension, and its position as a function of time is given by x = (2.1 m/s)t + (−3.0 m/s2)t2. (a) What is the particle's average velocity from t = 0.45 s to t = 0.55 s? (Indicate the direction with the sign of your answer.)(b) What is the particle's average velocity from t = 0.49 s to t = 0.51 s? (Indicate the direction with the sign of your answer.)arrow_forwardThe acceleration of a particle is given by a = 2t - 15, where a is in meters per second squared and t is in seconds. Determine the velocity and displacement as functions of time. The initial displacement at t = 0 is 5o = -6 m, and the initial velocity is vo= 5 m/s. Once you have determined the functions of time, answer the questions. Questions: When t = 4.9 s, S= i V= a= i i m m/s m/s²arrow_forward
- A particle moves only along the x axis. Its position varies with time according to the equation x = -6t + 2t^2, where x is in meters and t is in seconds. a) Graph its position, velocity, and acceleration, as a function of time, in the interval 0 ≤ t ≤ 4 s. (Use a table for t = 0, 1, 2, 3, 4 s to construct the graphs). b) In what time interval does it move to the left and in which time interval does it move to the right? c) Calculate the instantaneous velocity and acceleration at t = 1.5 s.arrow_forwardA particle moving in 1D has time-dependent velocity which is given by the quadratic function v(t) = At2 + Bt + C, where A = 4.5 m/s3, B = 3.6 m/s2, and C = −1.7 m/s. a) Find the average acceleration of the particle between t = 0 s and 2.5 s. b) Find the average acceleration of the particle between t = 2.5 s and 5.0 s. c) At what time(s) is the particle at rest?arrow_forwardNow let’s apply our definition of average velocity to a swimming competition. During one heat of a swim meet, a swimmer performs the crawl stroke in a pool 50.0 mm long, as shown in (Figure 1). She swims a length at racing speed, taking 24.0 ss to cover the length of the pool. She then takes twice that time to swim casually back to her starting point. Find (a) her average velocity for each length and (b) her average velocity for the entire swim. c) If the swimmer could cross a 15 kmkm channel maintaining the same average velocity as for the first 50 mm in the pool, how long would it take?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY