Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
Question
Book Icon
Chapter 2, Problem 2.3QAP
Interpretation Introduction

(a)

Interpretation:

The relative error in the voltage reading if the internal resistance of the voltmeter was 4000 χ should be calculated.

Concept introduction:

The percentage relative loading error of the voltmeter Er = VM-VxVX×100%

VM = Voltage of the meter

VX = True voltage of the source

VM=VX(RMRM+RS)

When resistors are in series, a voltage divider. V = V1 + V2 + V3

The current in a series circuit is everywhere the same. In other words, I = I1 = I2 = I3

The total resistance Rs of a series circuit is equal to the sum of the resistances of the individual components. Rs = R1 + R2 + R3

Ohm’s law;

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

V = Voltage I = Current R = resistant

Interpretation Introduction

(b)

Interpretation:

The relative error in the voltage reading if the internal resistance of the voltmeter was 80.0 kχ should be calculated.

Concept introduction:

The percentage relative loading error of the voltmeter E r = VM-VxVX×100%

VM = Voltage of the meter

VX = True voltage of the source

VM=VX(RMRM+RS)

When resistors are in series, a voltage divider. V = V1 + V2 + V3

The current in a series circuit is everywhere the same. In other words, I = I1 = I2 = I3

The total resistance Rs of a series circuit is equal to the sum of the resistances of the individual components. Rs = R1 + R2 + R3

Ohm’s law;

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

V = Voltage I = Current R = resistant

Interpretation Introduction

(c)

Interpretation:

The relative error in the voltage reading if the internal resistance of the voltmeter was 1.00 Mχ should be calculated.

Concept introduction:

The percentage relative loading error of the voltmeter E r = VM-VxVX×100%

VM = Voltage of the meter

VX = True voltage of the source

VM=VX(RMRM+RS)

When resistors are in series, a voltage divider. V = V1 + V2 + V3

The current in a series circuit is everywhere the same. In other words, I = I1 = I2 = I3

The total resistance Rs of a series circuit is equal to the sum of the resistances of the individual components. Rs = R1 + R2 + R3

Ohm’s law;

Ohm’s law describes the relationship among voltage, resistance, and current in a resistive series circuit.

V = IR

V = Voltage I = Current R = resistant

Blurred answer
Students have asked these similar questions
Calculate the voltage necessary to supply a current of 6A through a 4ohms resistor.
The electric field strength between the plates of a simple air capacitor is equal to the voltage across the plates divided by the distance between them. When a kV voltage of 64.6 V is put across the plates of such a capacitor an electric field strength of 3.4 is measured. Write an equation that will let you calculate the distance d between the plates. Your equation should contain only symbols. Be sure you define each symbol. Your equation: d = 0 Definitions of your symbols: kV 0 = 3.4 cm 0 = 64.6 V 010 X E A cm 3
9:01 A elearning.alsafwa.edu.iq الوقت المتبقي 0:43:09 1 Jlgw غير مجاب علیه بعد الدرجة من 3.00 علم هذا السؤال When a current of 0.4 A flows for 1.5 micro-seconds in a coper wire, estimate the number of electrons crossing the cross-section of the wire No. of electron= 4.8×10-19 electron No. of electron= 1.875×1012 electron No. of electron= 3x10-7 electron No. of electron= 4.8×10-26 electron الصفحة التالية الإعلانات
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning