Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 12CQ
A hockey puck is sliding on frictionless ice. It slams against a wall and bounces back toward the player with the same speed it had before hitting the wall. Does the velocity of the hockey puck change in this process? Explain.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Two students hold a large bed sheet vertically between them. A third student, who happens to be the star pitcher on the baseball team, throws a raw egg at the center of the sheet. Explain why the egg does not break when it hits the sheet, regardless of the initial speed of the egg.
A ball, m1 = 0.1 kg, having initial velocity v1i = 0.5 m/s hits a stationary ball in a glancing collision. After the collision the balls have final speeds v1f = 0.4 m/s and v2f = 0.2 m/s and ball 1 bounces back at an angle of 110 degrees relative to its incident trajectory.
a) Sketch diagrams of the balls before and after the collision. Include a co-ordinate system and label all relevant angles and velocities.
b) Write down algebraic expressions for the total initial momentum and total final momentum along the x and y axes (using the co-ordinate system defined in a) in terms of the mass and velocity (magnitude and angle) of each ball
c)Determine the mass of ball 2, m2, and the angle between the final trajectories, theta, of the two balls after the collision
3. Harry Potter is doing his usual thing of cruising around looking for the Golden Snitch
when a rogue bludger drills him in the arm. We can assume that the bludger is initially
moving at a speed of 15.0 m/s and hits Harry directly from the side. If Harry had been
moving forward with a speed of 24.0 m/s and the bludger and Harry stick together
after the collision, what is their final velocity (both magnitude and direction)? Assume
that Harry has a mass of 48.0 kg (including his Nimbus 2000) and that the mass of a
bludger is 25.0 kg.
m B
= 25.0 kg
B = 15.0 m/s
Bam!
Harry+Bludger
v = ?
Angle = ?
24.0 m/s
HP
48.0 kg
Harry
HP
4. Gordon Sumner is playing billiards and hits the cue ball with a velocity of 3.50 m/s
(white ball in figure, velocity vector shown in red). It strikes the at rest 8-ball (black
ball in figure) and the cue ball is deflected at an angle of 40.0° relative to its initial
direction and with a final speed of 2.68 m/s. If the collision is elastic, find the angle
of the…
Chapter 2 Solutions
Physics of Everyday Phenomena
Ch. 2 - Prob. 1CQCh. 2 - Suppose we choose inches as our basic unit of...Ch. 2 - What units would have an appropriate size for...Ch. 2 - A tortoise and a hare cover the same distance in a...Ch. 2 - A driver states that she was doing 80 when stopped...Ch. 2 - Does the speedometer on a car measure average...Ch. 2 - Is the average speed over several minutes more...Ch. 2 - The highway patrol sometimes uses radar guns to...Ch. 2 - Is the term vehicle density (as used in everyday...Ch. 2 - Prob. 10CQ
Ch. 2 - At the front end of a traffic jam, is the vehicle...Ch. 2 - A hockey puck is sliding on frictionless ice. It...Ch. 2 - A ball attached to a string is whirled in a...Ch. 2 - Prob. 14CQCh. 2 - A dropped ball gains speed as it falls. Can the...Ch. 2 - A driver of a car steps on the brakes, causing the...Ch. 2 - At a given instant in time, two cars are traveling...Ch. 2 - A car just starting up from a stop sign has zero...Ch. 2 - A car traveling with constant speed rounds a curve...Ch. 2 - A racing sports car traveling with a constant...Ch. 2 - In the graph shown here, velocity is plotted as a...Ch. 2 - A car moves along a straight line so that its...Ch. 2 - For the car whose distance is plotted against time...Ch. 2 - A car moves along a straight section of road so...Ch. 2 - For the car whose velocity is plotted in question...Ch. 2 - Look again at the velocity-versus-time graph for...Ch. 2 - Suppose the acceleration of a car increases with...Ch. 2 - When a car accelerates uniformly from rest, which...Ch. 2 - The velocity-versus-time graph of an object curves...Ch. 2 - For a uniformly accelerated car, is the average...Ch. 2 - A car traveling in the forward direction...Ch. 2 - A car starts from rest, accelerates uniformly for...Ch. 2 - Suppose that two runners run a 100-meter dash, but...Ch. 2 - Sketch a graph showing velocity-versus-time curves...Ch. 2 - A physics instructor walks with increasing speed...Ch. 2 - Prob. 36CQCh. 2 - Return to example box 2.4, but this time assume...Ch. 2 - A traveler covers a distance of 413 miles in a...Ch. 2 - A walker covers a distance of 2.4 km in a time of...Ch. 2 - Grass clippings are found to have an average...Ch. 2 - A driver drives for 2.5 hours at an average speed...Ch. 2 - A woman walks a distance of 504 m, with an average...Ch. 2 - A person in a hurry averages 70 MPH on a trip...Ch. 2 - A hiker walks with an average speed of 1.3 m/s....Ch. 2 - Prob. 8ECh. 2 - A car travels with an average speed of 65 MPH....Ch. 2 - Starting from rest and moving in a straight line,...Ch. 2 - Starting from rest, a car accelerates at a rate of...Ch. 2 - The velocity of a car decreases from 28 m/s to 20...Ch. 2 - A car traveling with an initial velocity of 16 m/s...Ch. 2 - A runner traveling with an initial velocity of 1.1...Ch. 2 - A car moving with an initial velocity of 32 m/s...Ch. 2 - A runner moving with an initial velocity of 4.0...Ch. 2 - If a world-class sprinter ran a distance of 100...Ch. 2 - Starting from rest, a car accelerates at a...Ch. 2 - A railroad engine moves forward along a straight...Ch. 2 - The velocity of a car increases with time, as...Ch. 2 - A car traveling due west on a straight road...Ch. 2 - A car traveling in a straight line with an initial...Ch. 2 - Just as car A is starting up, it is passed by car...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Sand from a stationary hopper falls onto a moving conveyor belt at the rate of 5.00 kg/s as shown in Figure P8.64. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.750 m/s under the action of a constant horizontal external force Fext supplied by the motor that drives the belt. Find (a) the sands rate of change of momentum in the horizontal direction, (b) the force of friction exerted by the belt on the sand, (c) the external force Fext, (d) the work done by Fext in 1 s, and (e) the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. (f) Why are the answers to parts (d) and (e) different? Figure P8.64arrow_forwardProblems 44 and 45 are paired. C A model rocket is shot straight up. As it reaches the highest point in its trajectory, it explodes in midair into three pieces with velocities indicated by the arrows in Figure P10.44, as viewed from directly above the explosion. Rank the mass of each piece in order from smallest to largest and justify your answer. FIGURE P10.44 Problems 44 and 45.arrow_forwardA 5-kg cart moving to the right with a speed of 6 m/s collides with a concrete wall and rebounds with a speed of 2 m/s. What is the change in momentum of the cart? (a) 0 (b) 40 kg m/s (c) 40 kg m/s (d) 30 kg m/s (e) 10 kg m/sarrow_forward
- Two objects have equal kinetic energies. How do the magnitudes of their momenta compare? (a) p1 p2 (b) p1 = p2 (c) p1 p2 (d) not enough information to tellarrow_forwardIf a rainstorm drops 1 cm of rain over an area of 10km2 in the period of 1 hour, what is the momentum of the rain that falls in one second? Assume the terminal velocity of a raindrop is 10 m/s.arrow_forwardA model rocket engine has an average thrust of 5.26 N. It has an initial mass of 25.5 g, which includes fuel mass of 12.7 g. The duration of its burn is 1.90 s. (a) What is the average exhaust speed of the engine? (b) This engine is placed in a rocket body of mass 53.5 g. What is the final velocity of the rocket if it were to be fired from rest in outer space by an astronaut on a space-walk? Assume the fuel burns at a constant rate.arrow_forward
- A basketball is tossed up into the air, falls freely, and bounces from the wooden floor. From the moment after the player releases it until the ball reaches the top of its bounce, what is the smallest system for which momentum is conserved? (a) the ball (b) the ball plus player (c) the ball plus floor (d) the ball plus the Earth (e) momentum is not conserved for any systemarrow_forwardIn Example 2.12, two circus performers rehearse a trick in which a ball and a dart collide. We found the height and time of the collision graphically. Return to that example, and find height and time by simultaneously solving the equations for the ball and the dart.arrow_forwardInitially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide in the trough of the track. If m2 = 4 m1 and the collision is elastic, find an expression for the velocity of each ball immediately after the collision. FIGURE P11.40 Problems 40 and 41.arrow_forward
- Consider a system of two particles in the xy plane: m1 = 2.00 kg is at the location r1=(1.00i+2.00j)m and has a velocity of (3.00i+0.500j)m/s; m2 = 3.00 kg is at r2=(4.00i+3.00j)m and has velocity (3.00i+2.00j)m/s. (a) Plot these particles on a grid or graph paper. Draw their position vectors and show their velocities. (b) Find the position of the center of mass of the system and mark it on the grid. (c) Determine the velocity of the center of mass and also show it on the diagram. (d) What is the total linear momentum of the system?arrow_forwardFigure P9.59a shows an overhead view of the configuration of two pucks of mass In on frictionless ice. The pucks are tied together with a string of length 1' and negligible mass. At time t = 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the force has moved through a distance 4 and the pucks have attained a speed v (Fig. P9.59b). (a) What is v in terms of F, d, e, and in? (b) How much of the energy transferred into the system by work done by the force has been transformed to internal energy?arrow_forwardA girl of mass mg is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vgp to the right relative to the plank. (The subscript gp denotes the girl relative to plank.) (a) What is the velocity vpi of the plank relative to the surface of the ice? (b) What is the girls velocity vgi relative to the ice surface?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY