Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 125P
To determine
The relation for the drag force per unit area on plates applied by the fluid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Fluid
The laminar flow of a fluid with viscosity µ and density ρ in a circular pipe of radius R has a velocity distribution described by where UCL is the velocity on the centerline where r = 0. (a) Using a control volume analysis, find τw, the shear stress at the wall, in terms of R and the pressure gradient dp/dx. (b) Using the expression for the velocity profile, find τw, the shear stress at the wall, in terms of µ, R, and UCL. (c) Find the average velocity in terms of UCL. (d) Using the results from parts (a)-(c), show that where Re is the Reynolds number based on the diameter D.
۱۵
Q3/ A dash pot is 0.2 m in diameter and 0.25 m long and it
slides down in a vertical cylinder of diameter 0.21 m. The
lubricating oil filled in the annular space has a viscosity of
0.5 poise and has a linear velocity profile. When the load on
the piston is 25 N, find the speed with which the piston
slides down.
سرعة الله
Dash pot
Oil
Cylinder-
0.2 m
25 N
0.21 m
T
0.25 m
Chapter 2 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 2 - For a substance, what is the difference between...Ch. 2 - What is the difference between intensive and...Ch. 2 - What is specific gravity? How is it related to...Ch. 2 - The specific weight of a system is defined as the...Ch. 2 - Prob. 5CPCh. 2 - Under what conditions is the ideal-gas assumption...Ch. 2 - What is the difference between R and Ru? How are...Ch. 2 - A fluid that occupies a volume of 24 L weighs 22 N...Ch. 2 - Prob. 9PCh. 2 - A mass of 1-Ibm of argon is maintained at 200 psia...
Ch. 2 - What is the specific volume of oxygen at 40 psia...Ch. 2 - The air in an automobile tire with a volume of...Ch. 2 - The pressure in an automobile tire depends on the...Ch. 2 - A spherical balloon with a diameter of 9 m is...Ch. 2 - Prob. 16PCh. 2 - Prob. 18EPCh. 2 - Does water boil at higher temperatures at higher...Ch. 2 - Prob. 22CPCh. 2 - What is cavitation? What causes it?Ch. 2 - What is vapor pressure? How is it related to...Ch. 2 - Prob. 24EPCh. 2 - A pump is used to transport water to a higher...Ch. 2 - Prob. 26PCh. 2 - The analysis of a propeller that operates in water...Ch. 2 - What is flow energy? Do fluids at rest possess any...Ch. 2 - How do the energies of a flowing fluid and a fluid...Ch. 2 - Prob. 30CPCh. 2 - Prob. 31CPCh. 2 - List the forms of energy that contribute to the...Ch. 2 - How are heat, internal energy, and thermal energy...Ch. 2 - Using average specific heats, explain how internal...Ch. 2 - Prob. 35CPCh. 2 - Saturated water vapor at 150°C (enthalpy...Ch. 2 - Prob. 37CPCh. 2 - What does the coefficient of volume expansion of a...Ch. 2 - Can the coefficient of compressibility of a fluid...Ch. 2 - Water at 15°C and 1 atm pressure is heated to 95°C...Ch. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Water at 1 atm pressure is compressed to 400 atm...Ch. 2 - The volume of an ideal gas is to be reduced by...Ch. 2 - Saturated refrigerant-134a liquid at 10C is cooled...Ch. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - The density of seawater at a free surface where...Ch. 2 - Prob. 49EPCh. 2 - Prob. 50EPCh. 2 - Prob. 51PCh. 2 - The ideal gas equation of state is very simple,...Ch. 2 - A frictionless piston-cylinder device contains 10...Ch. 2 - Reconsider Prob. 2-48. Assuming a bear pressure...Ch. 2 - Prob. 55CPCh. 2 - Prob. 56CPCh. 2 - Prob. 57CPCh. 2 - Prob. 58CPCh. 2 - Prob. 59CPCh. 2 - Prob. 60CPCh. 2 - Is then sonic ve1ocity a specified medium a fixed...Ch. 2 - The Airbus A-340 passenger plane has a maximum...Ch. 2 - Carbon dioxide enters an adiabatic nozzle at 1200...Ch. 2 - Prob. 64PCh. 2 - Assuming ideal gas behavior, determine the speed...Ch. 2 - Prob. 66PCh. 2 - Steam flows through a device with a pressure of...Ch. 2 - Prob. 69EPCh. 2 - Air expands isentropically from 2.2 MPa 77C to 0.4...Ch. 2 - Repeat Prob. 2-66 for helium gas.Ch. 2 - Prob. 72PCh. 2 - What is viscosity? What is the cause of it is...Ch. 2 - Prob. 74CPCh. 2 - How does the kinematic viscosity of (a) liquids...Ch. 2 - Prob. 76CPCh. 2 - Prob. 77CPCh. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - Consider the flow of a fluid with viscosity ...Ch. 2 - A thin 30cm30cm flat plate is pulled at 3 m/s...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - The dynamic viscosity of carbon dioxide at 50°C...Ch. 2 - For flow over a plate, the variation of velocity...Ch. 2 - In regions far from the entrance, fluid flow...Ch. 2 - Repeat Prob. 2-83 for umax=6m/s .Ch. 2 - A frustum-shaped body is rotating at a constant...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - A large plate is pulled at a constant speed of U =...Ch. 2 - A cylinder of mass m slides down from rest in a...Ch. 2 - A thin plate moves between two parallel,...Ch. 2 - Prob. 95PCh. 2 - What is surface tension” What is its cause? Why is...Ch. 2 - Prob. 97CPCh. 2 - What is the capillary effect? What is its cause?...Ch. 2 - Prob. 99CPCh. 2 - Is the capillary rise greater in small- or...Ch. 2 - Prob. 101PCh. 2 - A2.4-in-diameter soap bubble is to be enlarged by...Ch. 2 - Prob. 103PCh. 2 - Determine the gage pressure inside a soap bubble...Ch. 2 - A 0.03-in-diameter glass tube is inserted into...Ch. 2 - Prob. 106PCh. 2 - A capillary tube of 1.2 mm diameter is immersed...Ch. 2 - Prob. 108PCh. 2 - Contrary to what you might expect, a solid steel...Ch. 2 - Nutrients dissolved in water are carried to upper...Ch. 2 - Prob. 111PCh. 2 - Consider a 55-cm-long journal bearing that is...Ch. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - A rigid tank contains an ideal gas at 300kPa and...Ch. 2 - The absolute pressure of an automobile tire is...Ch. 2 - The composition of a liquid with suspended solid...Ch. 2 - Prob. 119PCh. 2 - A 10-m3 tank contacts nitrogen at 25C and 800kPa....Ch. 2 - Prob. 123PCh. 2 - Although liquids, in general, are hard to...Ch. 2 - Prob. 125PCh. 2 - Prob. 126PCh. 2 - Prob. 127PCh. 2 - Reconsider Prob. 2-120. The shaft now rotates with...Ch. 2 - A 10-cm diameter cylindrical shaft rotates inside...Ch. 2 - Some rocks or bricks contain small air pockets in...Ch. 2 - Prob. 131PCh. 2 - Prob. 132PCh. 2 - Prob. 133PCh. 2 - Prob. 134PCh. 2 - Liquid water vaporizes into water vaper as it ?aws...Ch. 2 - In a water distribution system, the pressure of...Ch. 2 - Prob. 137PCh. 2 - The difference between the energies of a flowing...Ch. 2 - Prob. 139PCh. 2 - An ideal gas is compressed isothermally from...Ch. 2 - Prob. 141PCh. 2 - Prob. 142PCh. 2 - Prob. 143PCh. 2 - Water is compressed from 100 kPa to 5000 kPa at...Ch. 2 - Prob. 145PCh. 2 - The dynamic viscosity of air at 20C and 200kPa is...Ch. 2 - A viscometer constructed of two 30-cm -long...Ch. 2 - Prob. 148PCh. 2 - Prob. 149PCh. 2 - Prob. 150PCh. 2 - Prob. 151PCh. 2 - Prob. 152PCh. 2 - Prob. 153PCh. 2 - Prob. 154PCh. 2 - Evan though steel is about 7 to 8 times denser...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (a) A Newtonian fluid having a specific gravity of 0.95 and a kinematic viscosity of 4.2 x 10“m/s flows past a fixed surface as shown in Figure la. The “no-slip" condition suggests that the velocity of the fluid at the fixed surface is zero. The fluid velocity profile away from the fixed surface is given by the equation below: и Зу 1, U 28 2 where U is the constant maximum velocity and its value is 2 m/s. Given that the shear stress developed at the fixed surface is 0.12 N/m², determine the thickness of the fluid, d. Figure la: Fluid velocity profile (b) The clutch system shown in Figure 1b is used to transmit torque through a 3 mm thick clutch oil film with µ = 0.38 Ns/m² between two identical 25 cm diameter disks. When the driving shaft rotates at a speed of 100 rpm, the driven shaft is observed to be stationary. Assuming a linear velocity profile for the oil film, determine the transmitted torque and the power required. Driving shaft Driven shaft 25 cm 3 mm Clutch oil Figure 1b:…arrow_forwardThe rotating disk viscometer is a precise device for measuring the viscosity of fluids. In this type of viscometer, the flow develops in the gap (H) between the two parallel horizontal circular plates (disks) that have each a radius (R). The upper disk is rotated at a constant angular velocity (0) while the lower one is fixed. This results in a flow where only the angular component of the velocity vector (ve) is nonzero. It is parrow_forwardAn oil film of thickness 1.5 mm is used for lubrication between asquare plate of size 0.9 m × 0.9 m and an inclined plane having anangle of inclination 200. The weight of the square plate is 392.4 N andit slides down the plane with a uniform velocity of 0.2 m/s. Find thedynamic viscosity of the oilarrow_forward
- Answer thisarrow_forwardPlease Solve it in type ( not handwriting )arrow_forwardA block of mass 4.0 kg moves horizontally on a film of crude oil at 30°C. The contact area of the undersurface is 0.06 m². If initially the block has a speed of 3.0 m/s, find the speed after 1 s. Dynamic viscosity of crude oil at 30° is 1.65 x 10-3 Pa.s. The oil film thickness below block is 0.3mm.arrow_forward
- For the sliding plate viscometer shown below. The top plate is moving to the right with a constant velocity of 9.6 m/s in response to a force (F) N. The bottom plate is stationary. The kinamatic viscosity of the fluid betwen the two plates is 0.001 m2/s. Find the magnitude of the force (F) N, if the fluid specific gravity = 0.85, and water density = 1000 kg/m³. Assume a linear velocity distribution. 100 mm 50 mm 1 mmarrow_forwardTwo parallel flat plates are spaced 2 in. apart. One plate is moving at a velocity of 10 ft/min and the other is moving in the opposite direction at 35 ft/min. The viscosity of the fluid between the plates is constant at 363 lb/ft-hr. Calculate the stress on each plate. Calculate the fluid velocity profile expression for the system and fluid velocities at ½ in. intervals from plate to plate.arrow_forwardA plate 0.05 mm distant from a fixed plate, moves at 0.5 m/s and requires force 5 N/m² to maintain this speed. Determine the fluid viscosity between platesarrow_forward
- The space between two parallel plates 0.001 ft apart is filled with oil viscosity 0.7cp. The top plate is stationary while the lower plate is moving in the x-direction with a velocity 1ft/sec. A. Determine shear rate B. What should be the shear stress in lbf/ft^2? Answer asap plsarrow_forwardLaminar flow takes place between parallel plates 10 mm apart. The plates are inclined at 45° with the horizontal. For oil of viscosity 0.9 kg/m.s and mass density is 1260 kg/m³, the pressure at two points 1.0 m vertically apart are 80 kN/m2 and 250 kN/m2 when the upper plate moves at 2.00 m/s velocity relative to the lower plate but in opposite direction to flow determine velocity distribution, max. velocity and shear stress on the top plate.arrow_forwardTake the full-blown Couette flow as shown in the figure. While the upper plate is moving and the Lower Plate is constant, flow occurs between two infinitely parallel plates separated by the H distance. The flow is constant, uncompressed, and two-dimensional in the X-Y plane. In fluid viscosity µ, top plate velocity V, distance h, fluid density ρ, and distance y, create a dimensionless relationship for component X of fluid velocity using the method of repeating variables. Show all steps in order.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license