Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 23Q
To determine
(a)
The way, one can tell that the 20 brightest stars of the main-sequence stars like Sirius (spectral type A1), Vega (A0), etc. are younger than the Sun.
To determine
(b)
Whether or not, one can tell the age of alpha-Centauri A star as compared to that of the Sun with the given information.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Distance from
Apparent Brightness (rank;
brightest, 8 = dimmest)
Name of Star
Earth (light years) | 1 =
Sun
Sirius
8.6
Canopus
Arcturus
309
3.
36.7
4
Rigel
Vega
Alpha Centauri
Bernard's Star
773
5
25.3
4.3
7
5.9
8
13 What sentence explains why a star can be much farther from Earth than
the Sun, but still be bright?
nida nenv
A. Distance from Earth and apparent brightness are related.
B. Bright stars that are farther away are larger than the Sun.
C. The higher it appears in the sky, the brighter the star.
D. The apparent brightness scale goes up as stars get dimmer.
del sdT
Physics written by hand.
"51 Pegasi" is the name of the first normal star (besides the Sun) around which a planet was discovered. It is in the constellation Pegasus the horse. Its parallax is measured to be 0.064 arcsec.
a. What is its distance from us?
b. The apparent brightness is 1.79 × 10-10 J/(s·m2 ). What is the luminosity? How does that compare with that of the Sun? Look up the temperature: how do
Chapter 19 Solutions
Universe: Stars And Galaxies
Ch. 19 - Prob. 1QCh. 19 - Prob. 2QCh. 19 - Prob. 3QCh. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Prob. 6QCh. 19 - Prob. 7QCh. 19 - Prob. 8QCh. 19 - Prob. 9QCh. 19 - Prob. 10Q
Ch. 19 - Prob. 11QCh. 19 - Prob. 12QCh. 19 - Prob. 13QCh. 19 - Prob. 14QCh. 19 - Prob. 15QCh. 19 - Prob. 16QCh. 19 - Prob. 17QCh. 19 - Prob. 18QCh. 19 - Prob. 19QCh. 19 - Prob. 20QCh. 19 - Prob. 21QCh. 19 - Prob. 22QCh. 19 - Prob. 23QCh. 19 - Prob. 24QCh. 19 - Prob. 25QCh. 19 - Prob. 26QCh. 19 - Prob. 27QCh. 19 - Prob. 28QCh. 19 - Prob. 29QCh. 19 - Prob. 30QCh. 19 - Prob. 31QCh. 19 - Prob. 32QCh. 19 - Prob. 33QCh. 19 - Prob. 34QCh. 19 - Prob. 35QCh. 19 - Prob. 36QCh. 19 - Prob. 37QCh. 19 - Prob. 38QCh. 19 - Prob. 39QCh. 19 - Prob. 40QCh. 19 - Prob. 41QCh. 19 - Prob. 42QCh. 19 - Prob. 43QCh. 19 - Prob. 44QCh. 19 - Prob. 45QCh. 19 - Prob. 46QCh. 19 - Prob. 47QCh. 19 - Prob. 48QCh. 19 - Prob. 49QCh. 19 - Prob. 50QCh. 19 - Prob. 51QCh. 19 - Prob. 52QCh. 19 - Prob. 53Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- I need the answer as soon as possiblearrow_forwardSuppose a star has a luminosity of 7.0x1026 watts and an apparent brightness of 4.0x10-12 watt/m?. How far away is it? Give your answer in both kilometers and light-years.arrow_forward14 Suppose you see two main-sequence stars of the same spectral type. Star 1 is dimmer in apparent brightness than Star 2 by a factor of 100. What can you conclude? (Neglect any effects that might be caused by interstellar dust and gas.) A B C D Star 1 is 10 times more distant than Star 2. The luminosity of Star 1 is a factor of 100 less than the luminosity of Star 2. Star 1 is 100 times nearer than Star 2. Star 1 is 100 times more distant than Star 2. E Without first knowing the distances to these stars, you cannot draw any conclusions about how their true luminosities compare to each other.arrow_forward
- 5arrow_forward12: A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) Answer: 36.854 13:This star has a mass of 3.3 MSun. what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Please answer question 13 thank you.arrow_forwardMost stars (Main sequence) generate light through the same mechanism. Because of this, there is an empirical relation between their mass, M, and their Luminosity, L. This relation could be written in the form L/Lsun = (M/Msun, This relation is shown in the log-log diagram below. Find the value of a and round it to the nearest integer. 10 104 102 10-2 10-4 0.1 1.0 2.0 0.2 0.5 5.0 10.0 20.0 Mam (solar masses) Luminosty (solar units)arrow_forward
- 15: A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. What is the distance to this star? Answer: 37 16: What is the absolute magnitude of this star? Answer:1.8 17: Is this star more or less luminous than the Sun? Answer "M" for More luminous or "L" for Less luminous. (HINT: the absolute magnitude of the Sun is 4.8) Answer: M 18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.) Please answer question #18, #15-17 are correct, the photos provide the work for them.arrow_forwardHow does one go about these questions?arrow_forwardA star has a measured radial velocity of 300 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 657.18 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) nm Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-del ta (410.2 nm)arrow_forward
- An O8 V star has an apparent visual magnitude of +5. Use the method of spectroscopic parallax to estimate the distance to the star (in pc). (Hints: Refer to one of the H–R diagrams in the chapter, and use the magnitude–distance formula, d = 10(mV − MV + 5)/5 where d is the distance in parsecs, mV and MV are the apparent and absolute visual magnitude respectively.)arrow_forwardA distant galaxy has an apparent magnitude of 13 and is 5,000 kpc away. What is its absolute magnitude? (Round your answer to at least one decimal place.) The difference in absolute magnitude between two objects viewed from the same distance is related to their fluxes by the flux-magnitude relation. FA = 2.51(MB - MA) FB How does the absolute magnitude of this galaxy compare to the Milky Way (M = -21)? F, distant galaxy FMilky Wayarrow_forwardStar 1 and star 2 have the same V-magnitude, V = 7.5. However, they have different B-magnitudes, B1 = 7.2 and B2 = 8.5. What is the flux ratio, f1/f2, in the B-band?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning