CALC A cylinder with a frictionless, movable piston like that shown in Fig. 19.5 contains a quantity of helium gas. Initially the gas is at 1.00 × 10 5 Pa and 300 K and occupies a volume of 1.50 L. The gas then undergoes two processes. In the first, the gas is heated and the piston is allowed to move to keep the temperature at 300 K. This continues until the pressure reaches 2.50 × 10 4 Pa. In the second process, the gas is compressed at constant pressure until it returns to its original volume of 1.50 L. Assume that the gas may be treated as ideal. (a) In a pV -diagram, show both processes. (b) Find the volume of the gas at the end of the first process, and the pressure and temperature at the end of the second process. (c) Find the total work done by the gas during both processes. (d) What would you have to do to the gas to return it to its original pressure and temperature?
CALC A cylinder with a frictionless, movable piston like that shown in Fig. 19.5 contains a quantity of helium gas. Initially the gas is at 1.00 × 10 5 Pa and 300 K and occupies a volume of 1.50 L. The gas then undergoes two processes. In the first, the gas is heated and the piston is allowed to move to keep the temperature at 300 K. This continues until the pressure reaches 2.50 × 10 4 Pa. In the second process, the gas is compressed at constant pressure until it returns to its original volume of 1.50 L. Assume that the gas may be treated as ideal. (a) In a pV -diagram, show both processes. (b) Find the volume of the gas at the end of the first process, and the pressure and temperature at the end of the second process. (c) Find the total work done by the gas during both processes. (d) What would you have to do to the gas to return it to its original pressure and temperature?
CALC A cylinder with a frictionless, movable piston like that shown in Fig. 19.5 contains a quantity of helium gas. Initially the gas is at 1.00 × 105 Pa and 300 K and occupies a volume of 1.50 L. The gas then undergoes two processes. In the first, the gas is heated and the piston is allowed to move to keep the temperature at 300 K. This continues until the pressure reaches 2.50 × 104 Pa. In the second process, the gas is compressed at constant pressure until it returns to its original volume of 1.50 L. Assume that the gas may be treated as ideal. (a) In a pV-diagram, show both processes. (b) Find the volume of the gas at the end of the first process, and the pressure and temperature at the end of the second process. (c) Find the total work done by the gas during both processes. (d) What would you have to do to the gas to return it to its original pressure and temperature?
14
Z
In figure, a closed surface with q=b=
0.4m/
C =
0.6m
if the left edge
of the closed surface at position X=a,
if E is non-uniform and is given by
€ = (3 + 2x²) ŷ N/C, calculate the
(3+2x²)
net electric flux leaving the closed
surface.
No chatgpt pls will upvote
suggest a reason ultrasound cleaning is better than cleaning by hand?
Chapter 19 Solutions
University Physics with Modern Physics (14th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.