University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 19.22E
Three moles of an ideal monatomic gas expands at a constant pressure of 2.50 atm; the volume of the gas changes from 3.20 × 10−2 m3 to 4.50 × 10−2 m3. Calculate (a) the initial and final temperatures of the gas; (b) the amount of work the gas does in expanding; (c) the amount of heat added to the gas; (d) the change in internal energy of the gas.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two containers each hold 1 mole of an ideal gas at 1 atm. Container A holds a monatomic gas and container B holds a diatomic gas. The volume of each container is halved while the pressure is held constant. (Assume the initial volumes of containers A and B are equal.)
(c)
What is the ratio
QA
QB
of the energy transferred to gases A and B?
A 5-mole sample of helium gas is initially at 250 K and 0.5 atm pressure and isothermally compressed to 1.5 atm. If we consider that helium behaves like an ideal gas, find: a) The final volume of the gas. b) The work done by the gas. c) The energy transferred by heat
When a quantity of monatomic ideal gas expands at a constant pressure of 4.00×10^4 Pa, the volume of the gas increases from 2.00 ×10^-3 m3 to 8.00×10^-3 m3. What is the change in internal energy of the gas?
Chapter 19 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 19.1 - In Example 17.7 (Section 17.6), what is the sign...Ch. 19.2 - A quantity of ideal gas undergoes an expansion...Ch. 19.3 - The system described in Fig. 19.7a undergoes four...Ch. 19.4 - Rank the following thermodynamic processes...Ch. 19.5 - Which of the processes in Fig. 19.7 are isochoric?...Ch. 19.6 - Prob. 19.6TYUCh. 19.7 - You want to cool a storage cylinder containing 10...Ch. 19.8 - You have four samples of ideal gas, each of which...Ch. 19 - For the following processes, is the work done by...Ch. 19 - Prob. 19.2DQ
Ch. 19 - In which situation must you do more work:...Ch. 19 - Prob. 19.4DQCh. 19 - Discuss the application of the first law of...Ch. 19 - When ice melts at 0C, its volume decreases. Is the...Ch. 19 - You hold an inflated balloon over a hot-air vent...Ch. 19 - You bake chocolate chip cookies and put them,...Ch. 19 - Imagine a gas made up entirely of negatively...Ch. 19 - In an adiabatic process for an ideal gas, the...Ch. 19 - When you blow on the back of your hand with your...Ch. 19 - An ideal gas expands while the pressure is kept...Ch. 19 - A liquid is irregularly stirred in a...Ch. 19 - When you use a hand pump to inflate the tires of...Ch. 19 - In the carburetor of an aircraft or automobile...Ch. 19 - On a sunny day, large bubbles of air form on the...Ch. 19 - The prevailing winds on the Hawaiian island of...Ch. 19 - Prob. 19.18DQCh. 19 - In a constant-volume process, dU = nCV dT. But in...Ch. 19 - When a gas surrounded by air is compressed...Ch. 19 - When a gas expands adiabatically, it does work on...Ch. 19 - Prob. 19.22DQCh. 19 - A system is taken from state a to state b along...Ch. 19 - A thermodynamic system undergoes a cyclic process...Ch. 19 - Two moles of an ideal gas are heated at constant...Ch. 19 - Six moles of an ideal gas are in a cylinder fitted...Ch. 19 - Prob. 19.3ECh. 19 - BIO Work Done by the Lungs. The graph in Fig....Ch. 19 - CALC During the time 0.305 mol of an ideal gas...Ch. 19 - A gas undergoes two processes. In the first, the...Ch. 19 - Work Done in a Cyclic Process. (a) In Fig. 19.7a,...Ch. 19 - Figure E19.8 shows a pV-diagram for an ideal gas...Ch. 19 - A gas in a cylinder expands from a volume of 0.110...Ch. 19 - Five moles of an ideal monatomic gas with an...Ch. 19 - The process abc shown in the pV-diagram in Fig....Ch. 19 - A gas in a cylinder is held at a constant pressure...Ch. 19 - The pV-diagram in Fig. E19.13 shows a process abc...Ch. 19 - Boiling Water at High Pressure. When water is...Ch. 19 - An ideal gas is taken from a to b on the...Ch. 19 - During an isothermal compression of an ideal gas,...Ch. 19 - A cylinder contains 0.250 mol of carbon dioxide...Ch. 19 - A cylinder contains 0.0100 mol of helium at T =...Ch. 19 - In an experiment to simulate conditions inside an...Ch. 19 - When a quantity of monatomic ideal gas expands at...Ch. 19 - Heat Q flows into a monatomic ideal gas, and the...Ch. 19 - Three moles of an ideal monatomic gas expands at a...Ch. 19 - An experimenter adds 970 J of heat to 1.75 mol of...Ch. 19 - Propane gas (C3Hg) behaves like an ideal gas with ...Ch. 19 - CALC The temperature of 0.150 mol of an ideal gas...Ch. 19 - Five moles of monatomic ideal gas have initial...Ch. 19 - A monatomic ideal gas that is initially at 1.50 ...Ch. 19 - The engine of a Ferrari F355 F1 sports car takes...Ch. 19 - During an adiabatic expansion the temperature of...Ch. 19 - A player bounces a basketball on the floor,...Ch. 19 - On a warm summer day, a large mass of air...Ch. 19 - A cylinder contains 0.100 mol of an ideal...Ch. 19 - A quantity of air is taken from state a to state b...Ch. 19 - One-half mole of an ideal gas is taken from state...Ch. 19 - Figure P19.35 shows the pV-diagram for a process...Ch. 19 - The graph in Fig. P19.36 shows a pV-diagram for...Ch. 19 - When a system is taken from state a to state b in...Ch. 19 - A thermodynamic system is taken from state a to...Ch. 19 - A volume of air (assumed to be an ideal gas) is...Ch. 19 - Three moles of argon gas (assumed to be an ideal...Ch. 19 - Two moles of an ideal monatomic gas go through the...Ch. 19 - Three moles of an ideal gas are taken around cycle...Ch. 19 - Figure P19.43 shows a pV-diagram for 0.0040 mol of...Ch. 19 - (a) Onc-third of a mole of He gas is taken along...Ch. 19 - Starting with 2.50 mol of N2 gas (assumed to be...Ch. 19 - Nitrogen gas in an expandable container is cooled...Ch. 19 - CALC A cylinder with a frictionless, movable...Ch. 19 - CP A Thermodynamic Process in a Solid. A cube of...Ch. 19 - Prob. 19.49PCh. 19 - High-Altitude Research. A large research balloon...Ch. 19 - An air pump has a cylinder 0.250 m long with a...Ch. 19 - A certain ideal gas has molar heat capacity at...Ch. 19 - A monatomic ideal gas expands slowly to twice its...Ch. 19 - CALC A cylinder with a piston contains 0.250 mol...Ch. 19 - Use the conditions and processes of Problem 19.54...Ch. 19 - CALC A cylinder with a piston contains 0.150 mol...Ch. 19 - Use the conditions and processes of Problem 19.56...Ch. 19 - Comparing Thermodynamic Processes. In a cylinder,...Ch. 19 - DATA You have recorded measurements of the heat...Ch. 19 - DATA You compress a gas in an insulated cylinderno...Ch. 19 - DATA You place a quantity of gas into a metal...Ch. 19 - Prob. 19.62CPCh. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...Ch. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...Ch. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...Ch. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Due to the light absorbed by Earth’s surface that was emitted by Earth’s atmosphere, is Earth’s temperature nea...
Lecture- Tutorials for Introductory Astronomy
Sound wave and electromagnetic waves.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
At 15 kHz an inductor has 12 times the reactance of a capacitor. At what frequency will their reactances be equ...
Essential University Physics (3rd Edition)
4. *You accidentally release a helium-filled balloon that rises in the atmosphere. As it rises, the temperature...
College Physics
30 (Il) Calculate the electric field at the center of a square 42.5 cm on a side if one corner is occupied by a...
Physics: Principles with Applications
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two containers hold an ideal gas at the same temperature and pressure. Both containers hold the same type of gas, but container B has twice the volume of container A. (i) What is the average translational kinetic energy per molecule in container B? (a) twice that of container A (b) the same as that of container A (c) half that of container A (d) impossible to determine (ii) From the same choices, describe the internal energy of the gas in container B.arrow_forwardOne mole of an ideal gas does 3 000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine (a) the initial volume and (b) the temperature of the gas.arrow_forwardWhen a gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas does not change. (b) No work is done by the gas. (c) No energy is transferred to the gas by heat. (d) The internal energy of the gas does not change. (e) The pressure increases.arrow_forward
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardA certain ideal gas has a molar specific heat of Cv = 72R. A 2.00-mol sample of the gas always starts at pressure 1.00 105 Pa and temperature 300 K. For each of the following processes, determine (a) the final pressure, (b) the final volume, (c) the final temperature, (d) the change in internal energy of the gas, (e) the energy added to the gas by heat, and (f) the work done on the gas. (i) The gas is heated at constant pressure to 400 K. (ii) The gas is heated at constant volume to 400 K. (iii) The gas is compressed at constant temperature to 1.20 105 Pa. (iv) The gas is compressed adiabatically to 1.20 105 Pa.arrow_forwardA sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in Fig. P21.65). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state, (a) Find the number of moles in the sample. Find (b) the temperature at point B, (c) the temperature at point C, and (d) the volume at point C. (e) Now consider the processes A B, B C, and C A. Describe how to carry out each process experimentally, (f) Find Q, W, and Eint for each of the processes, (g) For the whole cycle A B C A, find Q, W, and Eint.arrow_forward
- For a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forwardA sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in Fig. P17.68). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state. (a) Find the number of moles in the sample. Find (b) the temperature at point B, (c) the temperature at point C, and (d) the volume at point C. (e) Now consider the processes A B, B C, and C A. Describe how to carry out each process experimentally. (f) Find Q, W, and Eint for each of the processes. (g) For the whole cycle A B C A, find Q, W, and Eint. Figure P17.68arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forward
- One cylinder contains helium gas and another contains krypton gas at the same temperature. Mark each of these statements true, false, or impossible to determine from the given information. (a) The rms speeds of atoms in the two gases are the same. (b) The average kinetic energies of atoms in the two gases are the same. (c) The internal energies of 1 mole of gas in each cylinder are the same. (d) The pressures in the two cylinders ale the same.arrow_forwardFigure P21.45 shows a cyclic process ABCDA for 1.00 mol of an ideal gas. The gas is initially at Pi = 1.50 105 Pa, Vi = 1.00 103 m3 (point A in Fig. P21.45). a. What is the net work done on the gas during the cycle? b. What is the net amount of energy added by heat to this gas during the cycle? FIGURE P21.45arrow_forwardIn Figure P19.22, the change in internal energy of a gas that is taken from A to C along the blue path is +800 J. The work done on the gas along the red path ABC is 500 J. (a) How much energy must be added to the system by heat as it goes from A through B to C? (b) If the pressure at point A is five times that of point C, what is the work done on the system in going from C to D? Figure P19.22 (c) What is the energy exchanged with the surroundings by heat as the gas goes from C to A along the green path? (d) If the change in internal energy in going from point D to point A is +500 J, how much energy must be added to the system by heat as it goes from point C to point D?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY