Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 19.122QP
Interpretation Introduction
Interpretation:
The rate of the given reactions from graphs has to be ranked. The
Concept introduction:
Exothermic reaction: Exothermic reaction is said to be a
Endothermic reaction: Endothermic reaction is said to be a chemical reaction in which energy will consumed in the form of heat. In general this reaction has to be represented as follows.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The data below were collected for the following reaction
at 35° C:
2(CH3)3 CSOH(g) → (CH3)3CS(O)SC(CH3)3 (g)
Time (min) [(CH3)3 CSOH] (mol · L−¹)
0.0
1.554
10.8
0.661
19.1
0.343
37.0
0.083
59.5
0.014
75.1
0.004
Part C
From the slope of the appropriate plot, determine the value of the rate constant at this temperature.
VG ΑΣΦ
Submit
Request Answer
?
5-1
Consider these three reactions as the elementary steps in the mechanism for a chemical reaction.(i) Cl2 (g) + Pt (s) à 2Cl (g) + Pt (s) Ea = 1550 kJ ∆H = – 950 kJ(ii) Cl (g)+ CO (g) + Pt (s) à ClCO (g) + Pt (s) Ea = 2240 kJ ∆H = 575 kJ(iii) Cl (g) + ClCO (g) à Cl2CO (g) Ea = 2350 kJ ∆H = – 825 kJ
e. Which reaction intermediate would be considered a catalyst (if any) and why?f. If you were to add 2700kJ of activation energy to the reaction, would you be able to make thereaction reverse itself (i.e. have the products become reactants)? Justify your answer.g. If you were to added a positive catalyst to step (iii) what would the end result be? Justify yourprediction.h. Your friend is looking at your graph and states that she believes that step (ii) is the ratedetermining step. Do you agree with her? Justify your reasoning.
Consider these three reactions as the elementary steps in the mechanism for a chemical reaction.(i) Cl2 (g) + Pt (s) à 2Cl (g) + Pt (s) Ea = 1550 kJ ∆H = – 950 kJ(ii) Cl (g)+ CO (g) + Pt (s) à ClCO (g) + Pt (s) Ea = 2240 kJ ∆H = 575 kJ(iii) Cl (g) + ClCO (g) à Cl2CO (g) Ea = 2350 kJ ∆H = – 825 kJ
a. Draw the potential energy diagram for the reaction. Label the data points for clarity.The potential energy of the reactants is 600 kJ.
b. What is the overall chemical equation?
c. What is the overall change in enthalpy for the above chemical reaction?
d. What is the overall amount of activation energy for the above chemical reaction?
e. Which reaction intermediate would be considered a catalyst (if any) and why?
f. If you were to add 2700kJ of activation energy to the reaction, would you be able to make the reaction reverse itself (i.e. have the products become reactants)? Justify your answer.
g. If you were to added a positive catalyst to step (iii) what would the end result be? Justify…
Chapter 19 Solutions
Chemistry: Atoms First
Ch. 19.3 - Prob. 19.1WECh. 19.3 - Write the rate expressions for each of the...Ch. 19.3 - Write the balanced equation corresponding to the...Ch. 19.3 - The diagrams represent a system that initially...Ch. 19.3 - Consider the reaction 4NO2(g)+O2(g)2N2O5(g) At a...Ch. 19.3 - Consider the reaction 4PH3(g)P4(g)+6H2(g) At a...Ch. 19.3 - Prob. 2PPBCh. 19.3 - Prob. 2PPCCh. 19.3 - Prob. 19.3.1SRCh. 19.3 - Prob. 19.3.2SR
Ch. 19.4 - The gas-phase reaction of nitric oxide with...Ch. 19.4 - Prob. 3PPACh. 19.4 - Prob. 3PPBCh. 19.4 - Prob. 3PPCCh. 19.4 - Prob. 19.4.1SRCh. 19.4 - Prob. 19.4.2SRCh. 19.4 - Prob. 19.4.3SRCh. 19.4 - Prob. 19.4.4SRCh. 19.4 - Prob. 19.4.5SRCh. 19.5 - Prob. 19.4WECh. 19.5 - Prob. 4PPACh. 19.5 - Prob. 4PPBCh. 19.5 - Prob. 4PPCCh. 19.5 - Prob. 19.5WECh. 19.5 - Prob. 5PPACh. 19.5 - Prob. 5PPBCh. 19.5 - Prob. 5PPCCh. 19.5 - Prob. 19.6WECh. 19.5 - Prob. 6PPACh. 19.5 - Calculate the rate constant for the first-order...Ch. 19.5 - Prob. 6PPCCh. 19.5 - Prob. 19.7WECh. 19.5 - The reaction 2A B is second order in A with a rate...Ch. 19.5 - Prob. 7PPBCh. 19.5 - Prob. 7PPCCh. 19.5 - Prob. 19.5.1SRCh. 19.5 - Prob. 19.5.2SRCh. 19.5 - Prob. 19.5.3SRCh. 19.5 - Prob. 19.5.4SRCh. 19.6 - Prob. 19.8WECh. 19.6 - Prob. 8PPACh. 19.6 - Prob. 8PPBCh. 19.6 - Prob. 8PPCCh. 19.6 - Prob. 19.9WECh. 19.6 - Prob. 9PPACh. 19.6 - Prob. 9PPBCh. 19.6 - Prob. 9PPCCh. 19.6 - Prob. 19.10WECh. 19.6 - Prob. 10PPACh. 19.6 - Prob. 10PPBCh. 19.6 - Prob. 10PPCCh. 19.6 - Prob. 19.6.1SRCh. 19.6 - Prob. 19.6.2SRCh. 19.7 - Prob. 19.11WECh. 19.7 - Prob. 11PPACh. 19.7 - Prob. 11PPBCh. 19.7 - Prob. 11PPCCh. 19.7 - Consider the gas-phase reaction of nitric oxide...Ch. 19.7 - Prob. 12PPACh. 19.7 - Prob. 12PPBCh. 19.7 - Prob. 12PPCCh. 19.7 - Prob. 19.7.1SRCh. 19.7 - Prob. 19.7.2SRCh. 19.7 - Prob. 19.7.3SRCh. 19.7 - Prob. 19.7.4SRCh. 19 - The rate of a reaction in which the reactant...Ch. 19 - The rate of a reaction in which the reactant...Ch. 19 - The rate of a reaction in which the reactant...Ch. 19 - Increasing the temperature of a reaction increases...Ch. 19 - Define activation energy. What role does...Ch. 19 - Sketch a potential energy versus reaction progress...Ch. 19 - The reaction H + H2 H2 + H has been studied for...Ch. 19 - What is meant by the rate of a chemical reaction?...Ch. 19 - Distinguish between average rate and instantaneous...Ch. 19 - What are the advantages of measuring the initial...Ch. 19 - Prob. 19.7QPCh. 19 - Consider the reaction N2(g)+3H2(g)2NH3(g) Suppose...Ch. 19 - Prob. 19.9QPCh. 19 - Prob. 19.10QPCh. 19 - Prob. 19.11QPCh. 19 - Prob. 19.12QPCh. 19 - Prob. 19.13QPCh. 19 - What are the units for the rate constants of...Ch. 19 - Consider the zeroth-order reaction: A product....Ch. 19 - Prob. 19.16QPCh. 19 - Prob. 19.17QPCh. 19 - Prob. 19.18QPCh. 19 - Prob. 19.19QPCh. 19 - Prob. 19.20QPCh. 19 - Prob. 19.21QPCh. 19 - Prob. 19.22QPCh. 19 - Prob. 19.23QPCh. 19 - Prob. 19.24QPCh. 19 - Prob. 19.25QPCh. 19 - Prob. 19.26QPCh. 19 - Prob. 19.27QPCh. 19 - Prob. 19.28QPCh. 19 - Prob. 19.29QPCh. 19 - Prob. 19.30QPCh. 19 - Prob. 19.31QPCh. 19 - Prob. 19.32QPCh. 19 - Prob. 19.33QPCh. 19 - Consider the first-order reaction X Y shown here,...Ch. 19 - Prob. 19.35QPCh. 19 - Consider the first-order reaction A B in which A...Ch. 19 - Prob. 19.37QPCh. 19 - Prob. 19.38QPCh. 19 - Prob. 19.39QPCh. 19 - Prob. 19.40QPCh. 19 - Prob. 19.41QPCh. 19 - Prob. 19.42QPCh. 19 - Prob. 19.43QPCh. 19 - Prob. 19.44QPCh. 19 - Prob. 19.45QPCh. 19 - The rate at which tree crickets chirp is 2.0 102...Ch. 19 - Prob. 19.47QPCh. 19 - The activation energy for the denaturation of a...Ch. 19 - Variation of the rate constant with temperature...Ch. 19 - Prob. 19.50QPCh. 19 - Prob. 19.51QPCh. 19 - Prob. 19.52QPCh. 19 - Prob. 19.53QPCh. 19 - What is an elementary step? What is the...Ch. 19 - Prob. 19.55QPCh. 19 - Determine the molecularity, and write the rate law...Ch. 19 - What is the rate-determining step of a reaction?...Ch. 19 - Prob. 19.58QPCh. 19 - Prob. 19.59QPCh. 19 - Classify each of the following elementary steps as...Ch. 19 - Prob. 19.61QPCh. 19 - Prob. 19.62QPCh. 19 - Prob. 19.63QPCh. 19 - Prob. 19.64QPCh. 19 - Prob. 19.65QPCh. 19 - What are the characteristics of a catalyst?Ch. 19 - Prob. 19.67QPCh. 19 - Prob. 19.68QPCh. 19 - The concentrations of enzymes in cells are usually...Ch. 19 - Prob. 19.70QPCh. 19 - Prob. 19.71QPCh. 19 - Prob. 19.72QPCh. 19 - Prob. 19.73QPCh. 19 - Prob. 19.74QPCh. 19 - Prob. 19.75QPCh. 19 - In a certain industrial process involving a...Ch. 19 - Prob. 19.77QPCh. 19 - Prob. 19.78QPCh. 19 - Explain why most metals used in catalysis arc...Ch. 19 - Prob. 19.80QPCh. 19 - Prob. 19.81QPCh. 19 - Prob. 19.82QPCh. 19 - Prob. 19.83QPCh. 19 - Prob. 19.84QPCh. 19 - The bromination of acetone is acid-catalyzed. The...Ch. 19 - The decomposition of N2O to N2 and O2 is a...Ch. 19 - Prob. 19.87QPCh. 19 - Prob. 19.88QPCh. 19 - The integrated rate law for the zeroth-order...Ch. 19 - Prob. 19.90QPCh. 19 - Prob. 19.91QPCh. 19 - Prob. 19.92QPCh. 19 - The reaction of G2 with E2 to form 2EG is...Ch. 19 - Prob. 19.94QPCh. 19 - Prob. 19.95QPCh. 19 - Prob. 19.96QPCh. 19 - Strictly speaking, the rate law derived for the...Ch. 19 - Prob. 19.98QPCh. 19 - The decomposition of dinitrogen pentoxide has been...Ch. 19 - Prob. 19.100QPCh. 19 - Prob. 19.101QPCh. 19 - Prob. 19.102QPCh. 19 - To prevent brain damage, a standard procedure is...Ch. 19 - Prob. 19.104QPCh. 19 - Prob. 19.105QPCh. 19 - Prob. 19.106QPCh. 19 - Prob. 19.107QPCh. 19 - Prob. 19.108QPCh. 19 - Prob. 19.109QPCh. 19 - Prob. 19.110QPCh. 19 - (a) What can you deduce about the activation...Ch. 19 - Prob. 19.112QPCh. 19 - Prob. 19.113QPCh. 19 - Prob. 19.114QPCh. 19 - Prob. 19.115QPCh. 19 - Prob. 19.116QPCh. 19 - Prob. 19.117QPCh. 19 - Prob. 19.118QPCh. 19 - Prob. 19.119QPCh. 19 - Prob. 19.120QPCh. 19 - Prob. 19.121QPCh. 19 - Prob. 19.122QPCh. 19 - Consider the following potential energy profile...Ch. 19 - Prob. 19.124QPCh. 19 - Prob. 19.125QPCh. 19 - Prob. 19.126QPCh. 19 - Prob. 19.127QPCh. 19 - Prob. 19.128QPCh. 19 - The following expression shows the dependence of...Ch. 19 - Prob. 19.130QPCh. 19 - The rale constant for the gaseous reaction H2(g) +...Ch. 19 - Prob. 19.132QPCh. 19 - Prob. 19.133QPCh. 19 - At a certain elevated temperature, ammonia...Ch. 19 - Prob. 19.135QPCh. 19 - The rate of a reaction was followed by the...Ch. 19 - Prob. 19.137QPCh. 19 - Prob. 19.138QPCh. 19 - Prob. 19.1KSPCh. 19 - Prob. 19.2KSPCh. 19 - Prob. 19.3KSPCh. 19 - Prob. 19.4KSP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider these three reactions as the elementary steps in the mechanism for a chemical reaction.(i) Cl2 (g) + Pt (s) à 2Cl (g) + Pt (s) Ea = 1550 kJ ∆H = – 950 kJ(ii) Cl (g)+ CO (g) + Pt (s) à ClCO (g) + Pt (s) Ea = 2240 kJ ∆H = 575 kJ(iii) Cl (g) + ClCO (g) à Cl2CO (g) Ea = 2350 kJ ∆H = – 825 kJ e. Which reaction intermediate would be considered a catalyst (if any) and why?f. If you were to add 2700kJ of activation energy to the reaction, would you be able to make thereaction reverse itself (i.e. have the products become reactants)? Justify your answer.g. If you were to added a positive catalyst to step (iii) what would the end result be? Justify yourprediction. h. Your friend is looking at your graph and states that she believes that step (ii) is the ratedetermining step. Do you agree with her? Justify your reasoning.arrow_forwardIf you have any specific questions or if you need assistance with something related to the topics that start with the letters "d" to "f,"arrow_forwardFor the reaction A2 + B2 → 2AB, Ea(fwd) = 125 kJ/mol and Ea(rev) = 85 kJ/mol. Assuming the reaction occurs in one step, (a) draw a reaction energy diagram; (b) calculate ΔH°rxn; and (c) sketch a possible transition state.arrow_forward
- Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. (i) H2(g) + NO(g) à H2O(g) + N(g) Ea = 436 kJ ∆H = –491 kJ (ii) N(g) + NO(g) à N2(g) + O(g) Ea = 625 kJ ∆H = –312 kJ (iii) O(g) + H2(g) à H2O(g) Ea = 1690 kJ ∆H = +131 kJ What is Ea for the overall reaction? You must calculate this from the potential energy diagram.arrow_forwardConsider these three reactions as the elementary steps in the mechanism for a chemical reaction. (i) H2(g) + NO(g) à H2O(g) + N(g) Ea = 436 kJ ∆H = –491 kJ (ii) N(g) + NO(g) à N2(g) + O(g) Ea = 625 kJ ∆H = –312 kJ ( iii) O(g) + H2(g) à H2O(g) Ea = 1690 kJ ∆H = +131 kJ What is the ∆H for the overall reaction? Overall, is it endothermic or exothermic?arrow_forwardConsider these three reactions as the elementary steps in the mechanism for a chemical reaction. (i) H2(g) + NO(g) à H2O(g) + N(g) Ea = 436 kJ ∆H = –491 kJ (ii) N(g) + NO(g) à N2(g) + O(g) Ea = 625 kJ ∆H = –312 kJ (iii) O(g) + H2(g) à H2O(g) Ea = 1690 kJ ∆H = +131 kJ Draw the potential energy diagram for the reaction. Assume the potential energy of the reactants was 1400 kJarrow_forward
- The rate of a certain reaction is given by the following rate law: rate = k [H,]°[NH;] Use this information to answer the questions below. What is the reaction order in H2? What is the reaction order in NH3? What is overall reaction order? At a certain concentration of H2 and NH3, the initial rate of reaction is 8.0 x 10* M / s. What would the initial rate of the reaction be if the concentration of H2 were doubled? Round M your answer to 2 significant digits. The rate of the reaction is measured to be 0.610 M / s when [H2] = 1.8 M and [NH3] = 1.8 M. Calculate the value of the -2 -1 k = * = 0M rate constant. Round your answer to 2 significant digits.arrow_forwardFor this reaction: Pa(s) +3 02 (g) - POg (s) + heat Which of the following changes would INCREASE the initial rate of the reaction? More than one answer may be correct. Select all that apply. O Grind the solid phosphorus into a fine powder O Use more 02 (g) in the reaction mixture Heat the reaction to a higher temperature O Add an appropriate catalyst Increase the volume of the reaction vessel Hydrazine, a rocket propellant, can be made from its elements according to this reaction: 8 H2 + 3 N2 N2H4 + 4 NH3 (ammonia is also made) When the individual rate of the H2 disappearance is -0.00795 M/s, what is the individual rate for N2?arrow_forwardConsider the following reaction: 4 HBr(g) + O2(g) 2 H2O(g) + 2 Br2(g)(a) The rate law for this reaction is first order in HBr(g) and first order in O2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 8.80e+03, what is the reaction rate when [HBr(g)] = 0.00429 M and [O2(g)] = 0.00758 M?Rate = _______ M/s.(c) What is the reaction rate when the concentration of HBr(g) is doubled, to 0.00858 M while the concentration of O2(g) is 0.00758 M?Rate = _______ M/sarrow_forward
- Consider the following reaction: Q:4-1 2 NO(g) + 2 H;(g) → N;(8) + 2 H,0(g) (a) The rate law for this reaction is first order in H, and second order in NO. Write the rate law. (b) If the rate constant for this reaction at 1000 K is 6.0 × 10ª M-²s¯!, what is the re- action rate when [NO] = 0.035 M and [H,] = 0.015 M? (c) What is the reaction rate at 1000 K when the concentration of NO is increased to 0.10 M, while the concentration of H, is 0.010 M? (d) What is the reaction rate at 1000 K if [NO] is decreased to 0.010 M and [H,] is increased to 0.030 M? %3Darrow_forwardEnter your answer in the provided box. The rate constant for the following elementary reaction is 6.1 x 10° M's at 25°C: -1 2A(g) +B(g) → 2C(g) AG° (kJ/mol) A 84.752 BO C 54.064 What is the rate constant for the reverse reaction at the same temperature?arrow_forwardConsider the following reaction: (a) The rate law for this reaction is first order in NO₂(g) and first order in O3(g). What is the rate law for this reaction? Rate = k [NO₂(g)] [03(g)] Rate = k [NO₂(g)]² [03(g)] Rate = k [NO₂(g)] [03(g)]² O Rate = k [NO₂(g)]² [03(g)]² Rate = k [NO₂(g)] [03(g)]³ Rate = k [NO₂(g)]4 [03(g)] (b) If the rate constant for this reaction at a certain temperature is 97900, what is the reaction rate when [NO₂(g)] = 0.587 M and [03(9)] = 1.40 M? Rate = 2 NO₂(g) + 03(9) → N₂O5(9) + O₂(g) M/s. Rate = (c) What is the reaction rate when the concentration of NO₂(g) is doubled, to 1.17 M while the concentration of O3(g) is 1.40 M? M/Sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY