Chemistry & Chemical Reactivity
10th Edition
ISBN: 9781337399074
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 104GQ
Galvanized steel pipes are used in the plumbing of many older homes. When copper plumbing is added to a system consisting of galvanized steel pipes it is necessary to place an insulator between the copper and the steel to avoid corrosion. Write a balanced oxidation-reduction equation for the reaction that occurs if the pipes are directly connected. What is the standard potential between the metals?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Chemistry & Chemical Reactivity
Ch. 19.1 - A common laboratory analysis for iron is to...Ch. 19.1 - Prob. 19.2CYUCh. 19.2 - Describe how to set up a voltaic cell using the...Ch. 19.2 - The following overall chemical reaction occurs in...Ch. 19.4 - (a) Rank the following metals in their ability to...Ch. 19.5 - A voltaic cell is set up with an aluminum...Ch. 19.5 - The half-cells Ag+(aq. 1.0 M)|Ag(s) and H+(aq, ?...Ch. 19.6 - Prob. 19.8CYUCh. 19.6 - Calculate the equilibrium constant at 25 C for the...Ch. 19.7 - Predict the chemical reactions that will occur at...
Ch. 19.8 - Prob. 19.11CYUCh. 19.9 - Prob. 1.1ACPCh. 19.9 - Prob. 1.2ACPCh. 19.9 - Prob. 1.3ACPCh. 19.9 - Prob. 2.1ACPCh. 19.9 - Use standard reduction potentials to determine...Ch. 19.9 - Prob. 2.3ACPCh. 19.9 - The overall reaction for the production of Cu(OH)2...Ch. 19.9 - Assume the following electrochemical cell...Ch. 19 - Write balanced equations for the following...Ch. 19 - Write balanced equations for the following...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Balance the following redox equations. All occur...Ch. 19 - Prob. 6PSCh. 19 - A voltaic cell is constructed using the reaction...Ch. 19 - A voltaic cell is constructed using the reaction...Ch. 19 - The half-cells Fe2+(aq) | Fe(s) and O2(g) | H2O...Ch. 19 - The half cells Sn2+(aq) |Sn(s) and Cl2(g) |Cl(aq)...Ch. 19 - For each of the following electrochemical cells,...Ch. 19 - For each of the following electrochemical cells,...Ch. 19 - Use cell notation to depict an electrochemical...Ch. 19 - Use cell notation to depict an electrochemical...Ch. 19 - What are the similarities and differences between...Ch. 19 - What reactions occur when a lead storage battery...Ch. 19 - Calculate the value of E for each of the following...Ch. 19 - Calculate the value of E for each of the following...Ch. 19 - Balance each of the following unbalanced...Ch. 19 - Balance each of the following unbalanced...Ch. 19 - Consider the following half-reactions: (a) Based...Ch. 19 - Prob. 22PSCh. 19 - Which of the following elements is the best...Ch. 19 - Prob. 24PSCh. 19 - Which of the following ions is most easily...Ch. 19 - From the following list, identify the ions that...Ch. 19 - (a) Which halogen is most easily reduced in acidic...Ch. 19 - Prob. 28PSCh. 19 - Calculate the potential delivered by a voltaic...Ch. 19 - Calculate the potential developed by a voltaic...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - One half-cell in a voltaic cell is constructed...Ch. 19 - Calculate rG and the equilibrium constant for the...Ch. 19 - Prob. 36PSCh. 19 - Use standard reduction potentials (Appendix M) for...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Use the standard reduction potentials (Appendix M)...Ch. 19 - Prob. 41PSCh. 19 - Prob. 42PSCh. 19 - Which product, O2 or F2, is more likely to form at...Ch. 19 - Which product, Ca or H2, is more likely to form at...Ch. 19 - An aqueous solution of KBr is placed in a beaker...Ch. 19 - An aqueous solution of Na2S is placed in a beaker...Ch. 19 - In the electrolysis of a solution containing...Ch. 19 - In the electrolysis of a solution containing...Ch. 19 - Electrolysis of a solution of CuSO4(aq) to give...Ch. 19 - Electrolysis of a solution of Zn(NO3)2(aq) to give...Ch. 19 - A voltaic cell can be built using the reaction...Ch. 19 - Assume the specifications of a Ni-Cd voltaic cell...Ch. 19 - Use E values to predict which of the following...Ch. 19 - Prob. 54PSCh. 19 - Prob. 55PSCh. 19 - Prob. 56PSCh. 19 - Prob. 57GQCh. 19 - Balance the following equations. (a) Zn(s) +...Ch. 19 - Magnesium metal is oxidized, and silver ions are...Ch. 19 - You want to set up a series of voltaic cells with...Ch. 19 - Prob. 61GQCh. 19 - Prob. 62GQCh. 19 - In the table of standard reduction potentials,...Ch. 19 - Prob. 64GQCh. 19 - Four voltaic cells are set up. In each, one...Ch. 19 - The following half-cells are available: (i)...Ch. 19 - Prob. 67GQCh. 19 - Prob. 68GQCh. 19 - A potential of 0.142 V is recorded (under standard...Ch. 19 - Prob. 70GQCh. 19 - The standard potential, E, for the reaction of...Ch. 19 - An electrolysis cell for aluminum production...Ch. 19 - Electrolysis of molten NaCl is done in cells...Ch. 19 - A current of 0.0100 A is passed through a solution...Ch. 19 - A current of 0.44 A is passed through a solution...Ch. 19 - Prob. 76GQCh. 19 - Prob. 77GQCh. 19 - Prob. 78GQCh. 19 - The products formed in the electrolysis of aqueous...Ch. 19 - Predict the products formed in the electrolysis of...Ch. 19 - Prob. 81GQCh. 19 - The metallurgy of aluminum involves electrolysis...Ch. 19 - Prob. 83GQCh. 19 - Prob. 84GQCh. 19 - Prob. 85GQCh. 19 - Prob. 86GQCh. 19 - Two Ag+(aq) | Ag(s) half-cells are constructed....Ch. 19 - Calculate equilibrium constants for the following...Ch. 19 - Prob. 89GQCh. 19 - Use the table of standard reduction potentials...Ch. 19 - Prob. 91GQCh. 19 - Prob. 92GQCh. 19 - Prob. 93GQCh. 19 - A voltaic cell is constructed in which one...Ch. 19 - An expensive but lighter alternative to the lead...Ch. 19 - The specifications for a lead storage battery...Ch. 19 - Manganese may play an important role in chemical...Ch. 19 - Prob. 98GQCh. 19 - Iron(II) ion undergoes a disproportionation...Ch. 19 - Copper(I) ion disproportionates to copper metal...Ch. 19 - Prob. 101GQCh. 19 - Prob. 102GQCh. 19 - Can either sodium or potassium metal be used as a...Ch. 19 - Galvanized steel pipes are used in the plumbing of...Ch. 19 - Consider an electrochemical cell based on the...Ch. 19 - Prob. 106ILCh. 19 - A silver coulometer (Study Question 106) was used...Ch. 19 - Four metals, A, B, C, and D, exhibit the following...Ch. 19 - Prob. 109ILCh. 19 - The amount of oxygen, O2, dissolved in a water...Ch. 19 - Prob. 111SCQCh. 19 - The free energy change for a reaction, rG, is the...Ch. 19 - Prob. 113SCQCh. 19 - (a) Is it easier to reduce water in acid or base?...Ch. 19 - Prob. 115SCQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardGiven the following two standard reduction potentials, solve for the standard reduction potential of the half-reaction M3++eM2+ (Hint: You must use the extensive property G to determine the standard reduction potential.)arrow_forwardA voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forward
- An electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forwardA standard galvanic cell is constructed so that the overall cell reaction is 2A13++(aq)+3M(s)3M2+(aq)+2A1(s) Where M is an unknown metal. If G = 411 kJ for the overall cell reaction, identify the metal used to construct the standard cell.arrow_forwardAn electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forward
- Electrochemical Cells II Consider this cell running under standard conditions: Ni(s)Ni2(aq)Cu+(aq)Cu(s) a Is this cell a voltaic or an electrolytic cell? How do you know? b Does current flow in this cell spontaneously? c What is the maximum cell potential for this cell? d Say the cell is connected to a voltmeter. Describe what you might see for an initial voltage and what voltage changes, if any, you would observe as time went by. e What is the free energy of this cell when it is first constructed? f Does the free energy of the cell change over time as the cell runs? If so, how does it change?arrow_forwardGiven this reaction, its standard potential, and the standard half-cell potential of 0.34 V for the Cu2+ |Cu half-cell, calculate E° for the Fe(s)|Fe2+(aq) half-cell.arrow_forwarda Calculate G for the following cell reaction: Tl(s)Tl+(aq)Pb2+(aq)Pb(s) The Gf for Tl+(aq) is 32.4 kJ/mol. b From G, calculate the standard cell potential for the cell reaction and from this, determine the standard potential for Tl2+(aq)+eTl(s).arrow_forward
- An electrode is prepared by dipping a silver strip into a solution saturated with silver thiocyanate, AgSCN, and containing 0.10 M SCN . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.45 V. What is the solubility product of silver thiocyanate?arrow_forwardA galvanic cell is constructed in which the overall reactionis Cr2O72(aq)+14H2O+(aq)+6I(aq)2Cr3+(aq)+3I2(s)+21H2O(l) Calculate E for this cell. At pH 0, with [Cr2O72]=1.5M and [I]=0.40M, the cell potential is found to equal 0.87 V. Calculatethe concentration of Cr3+(aq) in the cell.arrow_forwardYou have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY