Vector Mechanics For Engineers
Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 18.3, Problem 18.119P

Show that for an axisymmetric body under no force, the rates of precession and spin can be expressed, respectively, as
   ϕ . = H G I '

and
   ψ . = H G cos θ ( I ' I ) I I '

where HG is die constant value of die angular momentum of the body.

Blurred answer
Students have asked these similar questions
1. There are four masses connected to a rotor that rotates in bearings at both ends. These four masses are lying at the radii of 90, 115. 190, and 140 mm respectively from the axis of rotation, and the planes in which these masses rotate are spaced 0.8 meters apart. The magnitudes of 03 masses are gives as: m¡ = 12 Kg, m, = 7 Kg, m, = 5 Kg. Find the value of the mass m, and the relative angular settings for the shaft to be in complete balance.
5. Consider a thin homogeneous plate with principal momenta of inertia along the principal axis x1 along the principal axis x2 I I,> I, I3=I;+I¡ along the principal axis x3 Let the origins of the x; and x; systems coincide and be located at the center of mass 0 of the plate. At time =0, the plate is set rotating in a force-free manner with an angular velocity 2 about an axis inclined at an angle a from the plane of the plate and perpendicular to the x-axis. If I,/I, = cos 2a, show that at time t %3D the angular velocity about the x-axis is w, (1) = N cos a · tanh(2t sin a)
Q3 A uniform sphere of 150 mm diameter has a mass of 5 kg. It is mounted centrally in bearings which maintain its axle in a horizontal plane. The sphere spins about its axle with a constant speed of 1000 r.p.m. while the axle precesses uniformly about the vertical at 60 r.p.m. The directions of rotation are as shown in Figure below. If the distance between the bearings is 100 mm, find the resultant reaction at each bearing due to the mass and gyroscopic effects. (35 degrees)

Chapter 18 Solutions

Vector Mechanics For Engineers

Ch. 18.1 - Prob. 18.11PCh. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Prob. 18.14PCh. 18.1 - Prob. 18.15PCh. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.19PCh. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - Prob. 18.29PCh. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Prob. 18.32PCh. 18.1 - Prob. 18.33PCh. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.35PCh. 18.1 - Prob. 18.36PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Prob. 18.44PCh. 18.1 - Prob. 18.45PCh. 18.1 - Prob. 18.46PCh. 18.1 - Prob. 18.47PCh. 18.1 - Prob. 18.48PCh. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Prob. 18.51PCh. 18.1 - Prob. 18.52PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.1 - Prob. 18.54PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Prob. 18.60PCh. 18.2 - Prob. 18.61PCh. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - A thin, homogeneous triangular plate of weight 10...Ch. 18.2 - Prob. 18.67PCh. 18.2 - Prob. 18.68PCh. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Prob. 18.72PCh. 18.2 - Prob. 18.73PCh. 18.2 - Prob. 18.74PCh. 18.2 - Prob. 18.75PCh. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.77PCh. 18.2 - Prob. 18.78PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - Prob. 18.83PCh. 18.2 - Prob. 18.84PCh. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - Prob. 18.88PCh. 18.2 - Prob. 18.89PCh. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - Prob. 18.92PCh. 18.2 - The 10-oz disk shown spins at the rate 1=750 rpm,...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Prob. 18.96PCh. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - Prob. 18.99PCh. 18.2 - Prob. 18.100PCh. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - Prob. 18.103PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.2 - Prob. 18.106PCh. 18.3 - Prob. 18.107PCh. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - Prob. 18.110PCh. 18.3 - Prob. 18.111PCh. 18.3 - A solid cone of height 9 in. with a circular base...Ch. 18.3 - Prob. 18.113PCh. 18.3 - Prob. 18.114PCh. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Show that for an axisymmetric body under no force,...Ch. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - Prob. 18.124PCh. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - An 800-lb geostationary satellite is spinning with...Ch. 18.3 - Solve Prob. 18.129, assuming that the meteorite...Ch. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - Prob. 18.136PCh. 18.3 - Prob. 18.137PCh. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Prob. 18.143PCh. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18.3 - Prob. 18.146PCh. 18 - Prob. 18.147RPCh. 18 - Prob. 18.148RPCh. 18 - A rod of uniform cross-section is used to form the...Ch. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - A homogeneous disk of weight W=6 lb rotates at the...Ch. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - Prob. 18.156RPCh. 18 - Prob. 18.157RPCh. 18 - Prob. 18.158RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Force | Free Body Diagrams | Physics | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4Bwwq1munB0;License: Standard YouTube License, CC-BY