The Cosmic Perspective (9th Edition)
The Cosmic Perspective (9th Edition)
9th Edition
ISBN: 9780134874364
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 57EAP
To determine

The age of Crab Nebula pulsar.

Blurred answer
Students have asked these similar questions
A spinning neutron star of mass M=1.4 solar masses, constant density, and radius R=10 km has a period P=1s. The neutron star is accepting mass from a binary companion through an accretion disk, at a rate of dM/dt=10^-9 solar masses per year. Assume the accreted matter is in a circular Keplerian orbit around the neutron star until just before it hits the surface, and once it does then all of the matter's angular momentum is transferred onto the neutron star. Derive a differential equation for dP/dt,  the rate at which the neutron-star period decreases. *I know the formula for the inertial of a uniform-density sphere is equal to .4MR^2, the relationship between the period and angular velocity is (omega)=2pi/(P), and the rotational kinetic energy is .5I(omega)^2 (don't know if this one is important for the problem but here it is anyways)*
The star HD 69830's mass is 1.7 ✕ 1030 kg, its radius is 6.3 ✕ 105 km, and it has a rotational period of approximately 35 days. If HD 69830 should collapse into a white dwarf of radius 7.8 ✕ 103 km, what would its period (in s) be if no mass were ejected and a sphere of uniform density can model HD 69830 both before and after?
How close, r, to the center of a neutron star would a manned satellite be orbiting if it were at the location where the gravitational force from the star equaled the gravitational force of the Earth's surface? RN = neutron star radius = 1 × 104 kmM N = neutron star mass = 3 × 1030 kgG = universal gravitational constant = 6.67 × 10-11 N m2 / kg2g⊕ = Earth gravitational acceleration = 9.807 m/s²

Chapter 18 Solutions

The Cosmic Perspective (9th Edition)

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning