In the
Because
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Chemistry
- For the decomposition of formic acid, HCOOH(l)H2O(l)+CO(g) H = +29 kJ/mol at 25C. a Does the tendency of this reaction to proceed to a state of minimum energy favor the formation of water and carbon monoxide or formic acid? Explain. b Does the tendency of this reaction to proceed to a state of maximum entropy favor the formation of products or reactants? Explainarrow_forwardAccording to a source, lithium peroxide (Li2O2) decomposes to lithium oxide (Li2O) and oxygen gas at about 195C. If the standard enthalpy change for this decomposition is 33.9 kJ/mol, what would you give as an estimate for the standard entropy change for this reaction? Explain.arrow_forwardConsider the reaction of 2 mol H2(g) at 25C and 1 atm with 1 mol O2(g) at the same temperature and pressure to produce liquid water at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forward
- a Calculate K1, at 25C for sulfurous acid: H2SO3(aq)H+(aq)+HSO3(aq) b Which thermodynamic factor is the most significant in accounting for the fact that sulfurous acid is a weak acid? Why?arrow_forwardSilver carbonate, Ag2CO3, is a light yellow compound that decomposes when heated to give silver oxide and carbon dioxide: Ag2CO3(s)Ag2O(s)+CO2(g) A researcher measured the partial pressure of carbon dioxide over a sample of silver carbonate at 220C and found that it was 1.37 atm. Calculate the partial pressure of carbon dioxide at 25C. The standard enthalpies of formation of silver carbonate and silver oxide at 25C are 505.9 kJ/mol and 31.05 kJ/mol, respectively. Make any reasonable assumptions in your calculations. State the assumptions that you make, and note why you think they are reasonable.arrow_forwardConsider the reaction of 1 mol H2(g) at 25C and 1 atm with 1 mol Br2(l) at the same temperature and pressure to produce gaseous HBr at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forward
- In muscle cells under the condition of vigorous exercise, glucose is converted to lactic acid (lactate),CH3CHOHCOOH, by the chemical reaction C6H12O6 2 CH3CHOHCOOHrG = 197 kJ/mol (a) If all of the Gibbs free energy from this reaction wereused to convert ADP to ATP, calculate how many molesof ATP could be produced per mole of glucose. (b) The actual reaction involves the production of 3 molATP per mole of glucose. Calculate the rG for thisoverall reaction. (c) Is the overall reaction in part (b) reactant-favored orproduct-favored?arrow_forwardWhat is the change in entropy, S, for the reaction CaCO3(s)+2H(aq)Ca2+(aq)+H2O(l)+CO2(g) See Table 18.1 for values of standard entropies. Does the entropy of the chemical system increase or decrease as you expect? Explain.arrow_forwardAdenosine triphosphate, ATP, is used as a free-energy source by biological cells. (See the essay on page 624.) ATP hydrolyzes in the presence of enzymes to give ADP: ATP(aq)+H2O(l)ADP(aq)+H2PO4(aq);G=30.5kJ/molat25C Consider a hypothetical biochemical reaction of molecule A to give molecule B: A(aq)B(aq);G=+15.0kJ/molat25C Calculate the ratio [B]/[A] at 25C at equilibrium. Now consider this reaction coupled to the reaction for the hydrolysis of ATP: A(aq)+ATP(aq)+H2O(l)B(aq)+ADP(aq)+H2PO4(aq) If a cell maintains a high ratio of ATP to ADP and H2PO4 by continuously making ATP, the conversion of A to B can be made highly spontaneous. A characteristic value of this ratio is [ATP][ADP][H2PO4]=500 Calculate the ratio [B][A] in this case and compare it with the uncoupled reaction. Compared with the uncoupled reaction, how much larger is this ratio when coupled to the hydrolysis of ATP?arrow_forward
- Pick the example with the highest entropy from each of the following sets. Explain your answers. a.Two opposing football teams just before the ball is snapped, two opposing football teams 1 second after the ball is snapped, two opposing football teams when the whistle is blown, ending the play b.A 10 copper/gold alloy, a 2 copper/gold alloy, pure gold c.A purse on which the strap just broke, a purse just hitting the ground, a purse on the ground with contents scattered d.Coins in a piggy bank, coins in piles containing the same type of coins, coins in stacks of the same type of coins e.A dozen loose pearls in a box, a dozen pearls randomly strung on a string, a dozen pearls strung on a string in order of decreasing sizearrow_forwardThe combustion of acetylene, C2H2, is a spontaneous reaction given by the equation 2C2H2(g)+5O2(g)4CO2(g)+2H2O(l) As expected for a combustion, the reaction is exothermic. What is the sign of H? What do you expect for the sign of S? Explain the spontaneity of the reaction in terms of the enthalpy and entropy changes.arrow_forwardNatural gas, which is mostly methane, CH4, is a resource that the United States has in abundance. In principle, ethane can be obtained from methane by the reaction 2CH4(g)C2H6(g)+H2(g) (a) Calculate G° at 25°C for the reaction. Comment on the feasibility of this reaction at 25°C. (b) Couple the reaction above with the formation of steam from the elements: H2(g)+12O2(g)H2O(g)G=228.6kJ What is the equation for the overall reaction? Comment on the feasibility of the overall reaction.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning