Concept explainers
(a)
The first two harmonic frequencies of vibration for the wire.
(a)
Answer to Problem 32PQ
The first two harmonic frequencies of vibration for the wire are
Explanation of Solution
Write the expression for the natural frequencies of vibration of a wire fixed at both ends.
Here,
Write the expression for the speed of wave in terms of tension in string and mass per unit length.
Here,
Write the equation for
Here,
Put the above equation in equation (II).
Put equation (III) in (I) to get final expression for
Conclusion:
It is given that length of the wire is
The first two harmonics are obtained when
Substitute
Substitute
Therefore, the first two harmonic frequencies of vibration for the wire are
(b)
The possible harmonic modes of vibration of the wire.
(b)
Answer to Problem 32PQ
The possible harmonic modes of vibration of the wire are
Explanation of Solution
It is given that the wire has a mode at
Write the expression for
Here,
Rewrite the above equation for
Write the expression for the wavelength of harmonics.
Rewrite the above equation for
Put equation (V) in equation (VI).
Substitute
Thus the mode corresponds to the
Substitute
There could be also an entire wavelength fitting between the nodes at the end at
Write the expression for
Here,
Rearrange the above equation for
Put the above equation in equation (VI).
Substitute
The expression for
Conclusion:
Substitute
Substitute
Therefore, the possible harmonic modes of vibration of the wire are
Want to see more full solutions like this?
Chapter 18 Solutions
Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
- (a) If frequency is not constant for some oscillation, can the oscillation be SHM? (b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forward(a) A hanging spring stretches by 35.0 cm when an object of mass 450 g is hung on it at rest. In this situation, we define its position as x = 0. The object is pulled down an additional 18.0 cm and released from rest to oscillate without friction. What is its position x at a moment 84.4 s later? (b) Find the distance traveled by the vibrating object in part (a), (c) What If? Another hanging spring stretches by 35.5 cm when an object of mass 440 g is hung on it at rest. We define this new position as x = 0. This object is also pulled down an additional 18.0 cm and released from rest to oscillate without friction. Find its position 84.4 s later, (d) Find the distance traveled by the object in part (c). (e) Why are the answers to parts (a) and (c) so different when the initial data in parts (a) and (c) are so similar and the answers to parts (b) and (d) are relatively close? Does this circumstance reveal a fundamental difficulty in calculating the future?arrow_forward(a) What is the effect on the period of a pendulum if you double its length? (b) What is the effect on the period of a pendulum if you decrease its length by 5.00%?arrow_forward
- A wooden block (m = 0.600 kg) is connected to a spring and undergoes simple harmonic motion with an amplitude of oscillation of 0.075 m. The frequency of the motion is 12.50 Hz. a. What is the spring constant? b. What is the maximum speed of the block? c. What is the speed of the block when it is 0.015 m away from the equilibrium position?arrow_forwardA spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.50 N is applied. A 0.500-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (a) What is the force constant of the spring? (b) What are the angular frequency , the frequency, and the period of the motion? (c) What is the total energy of the system? (d) What is the amplitude of the motion? (c) What are the maximum velocity and the maximum acceleration of the particle? (f) Determine the displacement x of the particle from the equilibrium position at t = 0.500 s. (g) Determine the velocity and acceleration of the particle when t = 0.500 s.arrow_forwardA block of mass m rests on a frictionless, horizontal surface and is attached to two springs with spring constants k1 and k2 (Fig. P16.22). It is displaced to the right and released. Find an expression for the angular frequency of oscillation of the resulting simple harmonic motion. FIGURE P16.22 Problems 22 and 81.arrow_forward
- A suspension bridge oscillates with an effective force constant of 1.00108 N/m . (a) How much energy is needed to make it oscillate with an amplitude of 0.100 m? (b) If soldiers march across the bridge with a cadence equal to the bridge’s natural frequency and impart 1.00104 J of energy each second, how long does it take for the bridge’s oscillations to go from 0.100 m to 0.500 m amplitude.arrow_forwardA spherical bob of mass m and radius R is suspended from a fixed point by a rigid rod of negligible mass whose length from the point of support to the center of the bob is L (Fig. P16.75). Find the period of small oscillation. N The frequency of a physical pendulum comprising a nonuniform rod of mass 1.25 kg pivoted at one end is observed to be 0.667 Hz. The center of mass of the rod is 40.0 cm below the pivot point. What is the rotational inertia of the pendulum around its pivot point?arrow_forwardA restaurant manager has decorated his retro diner by hanging (scratched) vinyl LP records from thin wires. The records have a mass of 180 g, a diameter of 12 in., and negligible thickness. The records oscillate as torsion pendulums. a. Records hung from a small hole near their rims have a period of roughly 3.5 s (Fig. P16.41A). What is the torsion spring constant of the wire? b. If a record is hung from its center hole using a wire of the same torsion spring constant (Fig. P16.41B), what is its period of oscillation? FIGURE P16.41arrow_forward
- Four people, each with a mass of 72.4 kg, are in a car with a mass of 1 130 kg. An earthquake strikes. The vertical oscillations of the ground surface make the car bounce up and down on its suspension springs, but the driver manages to pull off the road and stop. When the frequency of the shaking is 1.80 Hz, the car exhibits a maximum amplitude of vibration. The earthquake ends, and the four people leave the car as fast as they can. By what distance docs the cars undamaged suspension lift the cars body as the people get out?arrow_forward(a) If frequency is not constant for some oscillation, can the oscillation be simple harmonic motion? (b) Can you mink of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forwardA Two springs, with spring constants k1 and k2, are connected to a block of mass m on a frictionless, horizontal table (Fig. P16.80). The block is extended a distance x from equilibrium and released from rest. Show that the block executes simple harmonic motion with a period given by T=2m(k1+k2)k1k2 FIGURE P16.80arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning