Concept explainers
(a)
Interpretation: In the standard state condition the following species should be identify which shows the oxidizing agent in nature.
Concept Introduction:
An oxidizing agent is the chemical species that under goes a
We can say it one compound in an oxidation – reduction (redox) reaction.
To identify: The following species which shows the oxidizing agent in nature in standard state condition
(b)
Interpretation: In the standard state condition the following species should be identify which shows the oxidizing agent in nature.
Concept Introduction:
An oxidizing agent is the chemical species that under goes a chemical reaction which removes one or more electrons from another atom.
We can say it one compound in an oxidation – reduction (redox) reaction.
To identify: The following species which shows the oxidizing agent in nature in standard state condition
(c)
Interpretation: In the standard state condition the following species should be identify which shows the oxidizing agent in nature.
Concept Introduction:
An oxidizing agent is the chemical species that under goes a chemical reaction which removes one or more electrons from another atom.
We can say it one compound in an oxidation – reduction (redox) reaction.
To identify: The following species which shows the oxidizing agent in nature in standard state condition
(d)
Interpretation: In the standard state condition the following species should be identify which shows the oxidizing agent in nature.
Concept Introduction:
An oxidizing agent is the chemical species that under goes a chemical reaction which removes one or more electrons from another atom.
We can say it one compound in an oxidation – reduction (redox) reaction.
To identify: The following species which shows the oxidizing agent in nature in standard state condition
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Chemistry: Atoms First
- An aqueous solution of an unknown salt of vanadium is electrolyzed by a current of 2.50 amps for 1.90 hours. The electroplating is carried out with an efficiency of 95.0%, resulting in a deposit of 2.850 g of vanadium. a How many faradays are required to deposit the vanadium? b What is the charge on the vanadium ions (based on your calculations)?arrow_forwardA galvanic cell is based on the following half-reactions: In this cell, the copper compartment contains a copper electrode and [Cu2+] = 1.00 M, and the vanadium compartment contains a vanadium electrode and V2+ at an unknown concentration. The compartment containing the vanadium (1.00 L of solution) was titrated with 0.0800 M H2EDTA2, resulting in the reaction H2EDTA2(aq)+V2+(aq)VEDTA2(aq)+2H+(aq)K=? The potential of the cell was monitored to determine the stoichiometric point for the process, which occurred at a volume of 500.0 mL H2EDTA2 solution added. At the stoichiometric point, was observed to be 1 .98 V. The solution was buffered at a pH of 10.00. a. Calculate before the titration was carried out. b. Calculate the value of the equilibrium constant, K, for the titration reaction. c. Calculate at the halfway point in the titration.arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [Cr2O32] = 0.020 M, [I] = 0.015 M, [Cr3+] = 0.40 M, and [H+] = 0.60 M. Cr2O72(aq)+6I(aq)+14H+(aq)2Cr3+(aq)+3I2(s)+7H2O(l)arrow_forward
- Assume the following electrochemical cell simulates the galvanic cell formed by copper and zinc in seawater at pH 7.90 and 25 C. Zn | Zn(OH)2(s) | OH(aq) || Cu(OH)2(s) | Cu(s) a. Write a balanced equation for the reaction that occurs at the cathode. b. Write a balanced equation for the reaction that occurs at the anode. c. Write a balanced chemical equation for the overall reaction. d. Determine the potential (in volts) of the cell.arrow_forwardHydrazine, N2H4, has been proposed as the fuel in a fuel cell in which oxygen is the oxidizing agent. The reactions are N2H4(aq) + 4 OH(aq) N2(g) + 4 H2O() + 4e O2(g) + 2 H2O() + 4e 4 OH(aq) (a) Which reaction occurs at the anode and which at thecathode? (b) What is the overall cell reaction? (c) If the cell is to produce 0.50 A of current for 50.0 h, calculate what mass in grams of hydrazine must be present. (d) Calculate what mass (g) of O2 must be available to reactwith the mass of N2H4 determined in part (c).arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which I(aq) is in contact with I2(s) and an electrode in which a chromium strip dips into a solution of Cr3(aq)?arrow_forward
- At what pH does Ecell = 0.00 V for the reduction of dichromate by iodide ion in acid solution, assuming standard-state concentrations of all species except H+ ion?arrow_forwardAnswer the following questions by referring to standard electrode potentials at 25C. a Will oxygen, O2, oxidize iron(II) ion in solution under standard conditions? b Will copper metal reduce 1.0 M Ni2(aq) to metallic nickel?arrow_forwardElectrolysis of a solution of CuSO4(aq) to give copper metal is carried out using a current of 0.66 A. How long should electrolysis continue to produce 0.50 g of copper?arrow_forward
- What volume of F2 gas, at 25C and 1.00 atm, is produced when molten KF is electrolyzed by a current of 10.0 A for 2.00 h? What mass of potassium metal is produced? At which electrode does each reaction occur?arrow_forwardThe overall reaction for the production of Cu(OH)2 from Cu in oxygenated water can be broken into three steps: an oxidation half-reaction, a reduction half-reaction, and a precipitation reaction. a. Complete and balance the two missing half-reactions to give the overall equation for the oxidation of cooper in seawater. Oxidation half-reaction: ? Reduction half-reaction: ? Precipitation:Cu2+(aq)+2OH(aq)Cu(OH)2(s)Overall:Cu(s)+12O2(g)+H2O(l)Cu(OH)2(s) b. Determine the equilibrium constant for the overall reaction at 25 C using standard reduction potentials and the solubility product constant (Ksp) of Cu(OH)2(s).arrow_forwardThe cell potential of the following cell at 25C is 0.480 V. ZnZn2+(1M)H+(testsolution)H2(1atm)Pt What is the pH of the test solution?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning