(a)
Interpretation:
The given
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.
(b)
Interpretation:
The given redox reaction is spontaneous or nonspontaneous is to be stated.
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
- Consider the equilibrium system HF(aq)H+(aq)+F(aq) Given HfHF(aq)=320.1kJ/mol , HfF(aq)=332.6kJ/mol ; SF(aq)=13.8kJ/molK ; KaHF=6.9104 at 25°C calculate S° for HF(aq).arrow_forwardCalculate G and K at 25C for the reactions in Exercises 38 and 42.arrow_forwardActually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forward
- What is a spontaneous reaction?arrow_forwardCalculate G for the following reactions and state whether each reaction is spontaneous under standard conditions at 298 K. (a) 2Na(s) + H2SO4() Na2SO4(s) + H2(g) (b) Cu(s) + H2SO4() CuSO4(s) + H2(g)arrow_forwardThe equilibrium constant for a certain reaction increases by a factor of 6.67 when the temperature is increased from 300.0 K to 350.0 K. Calculate the standard change in enthalpy (H) for this reaction (assuming H is temperature-independent).arrow_forward
- The equilibrium constant for a reaction is 31015 (a) Without carrying out any calculation, discuss whether ?G° for the reaction is positive or negative. (b) Calculate ?G° for this reaction.arrow_forwardCalculate E°, G°, and K at 25°C for the reaction 3Mn2+(aq)+2MnO4(aq)+2H2O5MnO2(s)+4H+(aq)arrow_forwardConsider the decomposition of red mercury(II) oxide under standard state conditions.. 2HgO(s,red)2Hg(l)+O2(g) (a) Is the decomposition spontaneous under standard state conditions? (b) Above what temperature does the reaction become spontaneous?arrow_forward
- The equilibrium constant, K₂, for the following reaction is 0.636 at 600 K. Calculate Ke for this reaction at this temperature. COC1₂ (g) → CO(g) + Cl₂ (g) Kc =arrow_forwardWhat is AG° for the reaction CH₂OH(g) → CO(g) + 2 H₂(g) at 25°C? AH° = +90.7 kJ/mol kJ/molarrow_forwardConsider the reaction: CaCO3(s) ↔ CaO(s) + CO2(g) The reaction enthalpy and entropy are: ΔHo rx = -117.1 kJ∙mol-1; ΔSo rx = -362 J∙K-1mol-1. Assume that these values are independent of temperature. Calculate the equilibrium constant for this reaction at 25.0⁰ Carrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning