EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 14Q
In Fig. 16-15, if the frequency of the speakers is lowered, would the points D and C (where destructive and constructive interference occur) move farther apart or closer together?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(I) An organ pipe is 116 cm long. Determine the fundamentaland first three audible overtones if the pipe is (a) closedat one end, and (b) open at both ends.
(III) Two loudspeakers are placed 3.00 m apart, as shown in
Fig. 12–37. They emit 474-Hz sounds, in phase. A micro-
phone is placed 3.20 m distant from a point midway between
the two speakers, where an intensity maximum is recorded.
(a) How far must the microphone be moved to the right
to find the first intensity
minimum? (b) Suppose the
speakers are reconnected so
that the 474-Hz sounds they
emit are exactly out of
phase. At what positions are
the intensity maximum and
minimum now?
H3.00 m-
3.20 m
dɔ
FIGURE 12-37
Problem 54.
5-7. An airborne plane sound wave of frequency 1881 Hz is incident at an'
angle 45° on the calm surface of a freshwater lake. Assume the tempera-
ture is 20°C for the water and the air. The sound pressure level (SPL) of
the incident sound wave is 100 dB (re 20µPa). What is the SPL of the
sound in the water (re 1µPa) 0.1 m below the surface?
Chapter 16 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 16.3 - If an increase of 3 dB means twice as intense,...Ch. 16.3 - Trumpet players. A trumpeter plays at a sound...Ch. 16.4 - Prob. 1CECh. 16.4 - Prob. 1EECh. 16.7 - Prob. 1FECh. 16.7 - How fast would a source have to approach an...Ch. 16 - What is the evidence that sound travels as a wave?Ch. 16 - What is the evidence that sound is a form of...Ch. 16 - Children sometimes play with a homemade telephone...Ch. 16 - When a sound wave passes from air into water, do...
Ch. 16 - What evidence can you give that the speed of sound...Ch. 16 - The voice of a person who has inhaled helium...Ch. 16 - Two tuning forks oscillate with the same...Ch. 16 - How will the air temperature in a room affect the...Ch. 16 - Explain how a lube might be used as a filler to...Ch. 16 - Prob. 10QCh. 16 - Prob. 11QCh. 16 - A noisy truck approaches you from behind a...Ch. 16 - Traditional methods of protecting the hearing of...Ch. 16 - In Fig. 16-15, if the frequency of the speakers is...Ch. 16 - Prob. 15QCh. 16 - Consider the two waves shown in Fig. 1630. Each...Ch. 16 - Is there a Doppler shift if the source and...Ch. 16 - If a wind is blowing, will this alter the...Ch. 16 - Figure 1631 shows various positions of a child on...Ch. 16 - Prob. 1MCQCh. 16 - Prob. 2MCQCh. 16 - Prob. 3MCQCh. 16 - Prob. 4MCQCh. 16 - Prob. 5MCQCh. 16 - Prob. 6MCQCh. 16 - Prob. 7MCQCh. 16 - Prob. 8MCQCh. 16 - Prob. 9MCQCh. 16 - Prob. 10MCQCh. 16 - Prob. 11MCQCh. 16 - Prob. 12MCQCh. 16 - Prob. 13MCQCh. 16 - Prob. 14MCQCh. 16 - Prob. 1PCh. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - Prob. 8PCh. 16 - (II) Write an expression that describes the...Ch. 16 - Prob. 10PCh. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - What is the intensity of a sound at the pain level...Ch. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - Prob. 18PCh. 16 - A fireworks shell explodes 100m above the ground,...Ch. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - Prob. 29PCh. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - Prob. 35PCh. 16 - Prob. 36PCh. 16 - Prob. 37PCh. 16 - (II) A particular organ pipe can resonate at 264...Ch. 16 - Prob. 39PCh. 16 - Prob. 40PCh. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - The human car canal is approximately 2.5 cm long....Ch. 16 - Prob. 45PCh. 16 - (II) Approximately what are the intensities of the...Ch. 16 - Prob. 47PCh. 16 - Prob. 48PCh. 16 - Prob. 49PCh. 16 - What is the beat frequency if middle C (262 Hz)...Ch. 16 - Prob. 51PCh. 16 - (II) The two sources of sound in Fig. 1615 face...Ch. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - Prob. 55PCh. 16 - Prob. 56PCh. 16 - Prob. 57PCh. 16 - Prob. 58PCh. 16 - Prob. 59PCh. 16 - Prob. 60PCh. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - Prob. 63PCh. 16 - Prob. 64PCh. 16 - Prob. 65PCh. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - Show that the angle a sonic boom makes with the...Ch. 16 - Prob. 72PCh. 16 - Prob. 73GPCh. 16 - Prob. 74GPCh. 16 - Prob. 75GPCh. 16 - Prob. 76GPCh. 16 - Prob. 77GPCh. 16 - Prob. 78GPCh. 16 - Prob. 79GPCh. 16 - Prob. 80GPCh. 16 - Prob. 81GPCh. 16 - Prob. 82GPCh. 16 - Prob. 83GPCh. 16 - Prob. 84GPCh. 16 - Prob. 85GPCh. 16 - Prob. 86GPCh. 16 - Prob. 87GPCh. 16 - Prob. 88GPCh. 16 - Prob. 89GPCh. 16 - Prob. 90GPCh. 16 - Prob. 91GPCh. 16 - Prob. 92GPCh. 16 - Prob. 93GPCh. 16 - Prob. 94GPCh. 16 - Prob. 95GPCh. 16 - Prob. 96GPCh. 16 - Prob. 97GPCh. 16 - Prob. 98GPCh. 16 - Prob. 99GPCh. 16 - Prob. 100GPCh. 16 - Prob. 101GPCh. 16 - Prob. 102GPCh. 16 - Prob. 103GPCh. 16 - Prob. 104GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Acetobacter is necessary for only one of the steps of vitamin C manufacture. The easiest way to accomplish this...
Microbiology: An Introduction
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
13. Each of the following vectors is given in terms of its x- and y-components. Draw the vector, label an angle...
College Physics: A Strategic Approach (3rd Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (III) Two loudspeakers are placed 3.00 m apart, as shown in Fig. 12–37. They emit 474-Hz sounds, in phase. A micro- phone is placed 3.20 m distant from a point midway between the two speakers, where an intensity maximum is recorded. (a) How far must the microphone be moved to the right| to find the first intensity minimum? (b) Suppose the speakers are reconnected so that the 474-Hz sounds they emit are exactly out of phase. At what positions are the intensity maximum and minimum now? H3.00 m - 3.20 m d2 FIGURE 12-37 Problem 54.arrow_forward(II) Your ears can accommodate a huge range of soundlevels. What is the ratio of highest to lowest intensity at(a) 100 Hz, (b) 5000 Hz? (See Fig. 12–6.)arrow_forwardA dB meter registered 125 dB when it was placed 3.90 m in front of a speaker. (i) Calculate the power output of the speaker, assuming uniform spherical spreading of the sound and negligible absorption by the air.arrow_forward
- Children sometimes play with a homemade “telephone” byattaching a string to the bottoms of two paper cups. Whenthe string is stretched and a child speaks into one cup, thesound can be heard at the other cup (Fig. 12–29). Explainclearly how the sound wave travels from one cup to the other.arrow_forward(c) Two identical speakers are placed at the positions X and Y, as shown in the following figure. The separation distance between the positions X and Y is 4.9 m. When both speakers are working in phase under a frequency of 159 Hz, calculate the minimum distances of YZ and XZ, such that destructive interference would occur at the position Z. The speed of sound is 344 m/s. Hint: XY>YZ. X Z Two speakers at the positions X and Y (not to scale)arrow_forward(II) A person standing a certain distance from an airplanewith four equally noisy jet engines is experiencing a soundlevel of 140 dB. What sound level would this person experience if the captain shut down all but one engine? [Hint:Add intensities, not dBs.]arrow_forward
- A guitar string made of steel has a length of 40cm and mass of 35gm.when used on a guitar ,a tension of 40N is applied and a section of the string 35cm long will cause a vibration with a bow.The generated sound will have an intensity level of 60 dB at a distance of one meter. (I)What is the sound intensity level(dB) at a distance of 30m?arrow_forward2 In Fig. 16-24, wave 1 consists of a rectangular peak of height 4 units and width d, and a rectangular valley of depth 2 units and width d. The wave travels rightward along an x axis Choices 2, 3, and 4 are similar waves, with the same heights, depths, and widths, that will travel leftward along that axis and through wave 1. Right-going wave 1 and one of the left-going waves will interfere as they pass through each other. With which left-going wave will the interference give, for an instant, (a) the deepest valley, (b) a flat line, and (c) a flat peak 2d wide? (1) (2) (3) (4)arrow_forward(II) How far from the mouthpiece of the flute in Example 12–11 should the hole be that must be uncovered to play F above middle C at 349 Hz?arrow_forward
- (b) Consider the speaker set-up in the previous question. Each speaker emits a frequency of 6.6 102 Hz in phase with the other. The listener is seated directly in front of one speaker, 1.6 m away. The speakers are 2.4 m away from each other. How many extra wavelengths are needed for sound to get from speaker 2 to the listener? Take the speed of sound in air to be 3.4 102 m/s. Extra wavelengths |x,-x2|/A:| (c) What kind of interference, if any, does the listener in the previous question experience? There is not enough information to tell Destructive interference Constructive interference No interferencearrow_forward(II) An ocean fishing boat is drifting just above a school of tuna on a foggy day. Without warning, an engine backfire occurs on another boat 1.55 km away (Fig. 12–33). How much time elapses before the backfire is heard (a) by the fish, and (b) by the fishermen? (b) _1.55 km (a) FIGURE 12-33 Problem 5.arrow_forward(a) (i) State what is meant by the specific acoustic impedance of a medium. (ii) The density of a sample of bone is 1.8 gcm 3 and the speed of ultrasound in the bone is 4.1 x 10°ms-1. Calculate the specific acoustic impedance Z, of the sample of bone. Z3 = kgm-2s-1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY