Interpretation:
The energy profile diagram for the endothermic reaction involving formation of hydrogen iodide,
Concept introduction:
Reaction profile diagram shows the change in energy as the reaction progress. Transition state is the topmost point on reaction profile diagram where bond breaking and new bonds formation takes place. Activation energy is the amount of energy required to convert reactants into transition state. In endothermic reaction, heat is absorbed. In exothermic reaction, heat is evolved.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
- During an experiment with the Haber process, a researcher put 1 mol N2 and 1 mol H2 into a reaction vessel to observe the equilibrium formation of ammonia, NH3. N2(g)+3H2(g)2NH3(g) When these reactants come to equilibrium, assume that x mol H2 react. How many moles of ammonia form?arrow_forwardWhen writing a chemical equation for a reaction that comes to equilibrium. how do we indicate symbolically that the reaction is reversible?arrow_forwardWrite a balanced chemical equation for a totally gaseous equilibrium system that would lead to the following equilibrium constant expression. Keq=[N2]2[H2O]6[NH3]4[O2]3arrow_forward
- . Consider the following exothermic reaction at equilibrium: N2(g)+3H2(g)2NH3(g)Predict how the following changes affect the number of moles of each component of the system after equilibrium is re-established by completing the table. Complete the table with the terms increase, decrease, or no change. N2 H2 NH3 Add N2(g) Remove H2(g) Add NH3(g) Add Ne(g) (constant V) Increase the temperature Decrease the volume (constant T) Add a catalystarrow_forwardIn Section 13.1 of your text, it is mentioned that equilibrium is reached in a closed system. What is meant by the term closed system. and why is it necessary to have a closed system in order for a system to reach equilibrium? Explain why equilibrium is not reached in an open system.arrow_forward. Explain what it means that a reaction has reached a state of chemical equilibrium. Explain why equilibrium is a dynamic state: Does a reaction really “stop” when the system reaches a state of equilibrium? Explain why, once a chemical system has reached equilibrium, the concentrations of all reactants remain constant with time. Why does this constancy of concentration not contradict our picture of equilibrium as being dynamic? What happens to the rates of the forward and reverse reactions as a system proceeds to equilibrium from a starting point where only reactants are present?arrow_forward
- Suppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forwardThe following equilibrium is established in a closed container: C(s)+O2(g)CO2(g)H=393kJmol1 How does the equilibrium shift in response to each of the following stresses? (a) The quantity of solid carbon is increased. (b) A small quantity of water is added, and CO2 dissolves in it. (c) The system is cooled. (d) The volume of the container is increased.arrow_forwardWhen molecules collide, a certain minimum energy called the _________ is needed for the reaction to occur.arrow_forward
- Indicate whether or not each of the following changes would affect the value of a systems equilibrium constant. a. Removal of a reactant from the equilibrium mixture b. Decrease in the systems total pressure c. Decrease in the systems temperature d. Addition of a catalyst to the equilibrium mixturearrow_forwardConsider the reaction N2O4(g)2NO2(g). Draw a graph illustrating the changes of concentrations of N2O4 and NO2 as equilibrium is approached. Describe how the rates of the forward and reverse reactions change as the mixture approaches dynamic equilibrium. Why is this called a dynamic equilibrium?arrow_forward. For the reaction 3O2(g)2O3(g)The equilibrium constant, K, has the value 1.121054at a particular temperature. a. What does the very small equilibrium constant indicate about the extent to which oxygen gas, O2(g), is converted to ozone gas, O3(g), at this temperature? b. If the equilibrium mixture is analyzed and [O2(g)]is found to be 3.04102M, what is the concentration of O3(g) in the mixture’?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co